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Background and purpose: Primary open-angle glaucoma (POAG) is an optic
neuropathy characterized by death of retinal ganglion cells and atrophy of the optic
nerve head. The susceptibility of the optic nerve to damage has been shown to be
mediated by mitochondrial dysfunction. In this study, we aimed to determine a possible
association between mitochondrial SNPs or haplogroups and POAG.

Methods: Mitochondrial DNA single nucleotide polymorphisms (mtSNPs) were
genotyped using the Illumina Infinium Global Screening Array-24 (GSA) 700K array set.
Genetic analyses were performed in a POAG case-control study involving the cohorts,
Groningen Longitudinal Glaucoma Study-Lifelines Cohort Study and Amsterdam
Glaucoma Study, including 721 patients and 1951 controls in total. We excluded
samples not passing quality control for nuclear genotypes and samples with low call
rate for mitochondrial variation. The mitochondrial variants were analyzed both as SNPs
and haplogroups. These were determined with the bioinformatics software HaploGrep,
and logistic regression analysis was used for the association, as well as for SNPs.

Results: Meta-analysis of the results from both cohorts revealed a significant association
between POAG and the allele A of rs2853496 [odds ratio (OR) � 0.64; p � 0.006] within the
MT-ND4 gene, and for the T allele of rs35788393 (OR � 0.75; p � 0.041) located in theMT-
CYB gene. In the mitochondrial haplogroup analysis, the most significant p-value was
reached by haplogroup K (p � 1.2 × 10−05), which increases the risk of POAGwith an OR of
5.8 (95% CI 2.7–13.1).

Conclusion: We identified an association between POAG and polymorphisms in the
mitochondrial genes MT-ND4 (rs2853496) and MT-CYB (rs35788393), and with
haplogroup K. The present study provides further evidence that mitochondrial genome
variations are implicated in POAG. Further genetic and functional studies are required to
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substantiate the association between mitochondrial gene polymorphisms and POAG and
to define the pathophysiological mechanisms of mitochondrial dysfunction in glaucoma.

Keywords: mitochondrial polymorphism, mitochondrial haplogroup, primary open-angle glaucoma (POAG), MT-
CYB, MT-ND4, haplogroup K, genetic association study

INTRODUCTION

Primary open-angle glaucoma (POAG) is a complex and chronic
eye disease characterized by progressive death of retinal ganglion
cells (RGCs), which manifests itself initially as visual field loss.
Untreated POAG ultimately leads to irreversible blindness (Tham
et al., 2014). High intraocular pressure (IOP) is the first andmajor
risk factor identified in patients with POAG (Shaffer, 1996), in
addition other known risk factors are advanced age, myopia,
ethnicity, and positive family history for POAG (Gramer and
Grehn, 2012). Nowadays, the only efficacious therapy for
protecting the RCGs (from which the axons form the optic
nerve) in POAG is directed towards decreasing IOP. POAG is
also defined as a genetically complex disease because many genes
have been associated with this condition (Thorleifsson et al.,
2010; Burdon et al., 2011; Ramdas et al., 2011; Wiggs et al., 2011;
Cao et al., 2012; Osman et al., 2012; Liu et al., 2013; Chen et al.,
2014; Gharahkhani et al., 2014; Springelkamp et al., 2015; Trikha
et al., 2015; Choquet et al., 2018; Pasquale, 2019). Rearrangements
in the DNA and multiple disease genes have been implicated in
the pathogenesis of POAG (Davis et al., 2011; Janssen et al., 2013;
Liu et al., 2014; Lo Faro et al., 2021). Known disease genes include
myocilin (MYOC), optineurin (OPTN), WD repeat domain 36
(WDR36), cytochrome P450 family 1 subfamily B polypeptide 1
(CYP1B1), and TANK-binding kinase 1 (TBK1) (Janssen et al.,
2013). So far, more than 120 chromosomal loci have been
discovered through genome-wide association studies (Burdon
et al., 2011; Ramdas et al., 2011; Choquet et al., 2018;
Gharahkhani et al., 2021). Even so, the disease genes and
genetic risk factors identified only explain a small proportion
of POAG heritability, and contribute relatively little to
understanding the pathogenetic mechanisms. To date, the
majority of the genetic studies aim to identify the causes
underlying POAG by focusing on the nuclear genome. We
and other researchers have postulated that at least part of the
remaining POAG heritability might be found in variants in the
mitochondrial DNA (mtDNA) (Lascaratos et al., 2012; Osiewacz,
2014; Williams et al., 2017).

The mitochondrion is an organelle mainly involved in the
production of cellular energy with distinct extrachromosomal
circular and double-stranded molecules of DNA. The mtDNA is
transmitted through the maternal germline and it has a unique
subcellular transcription and replication machinery (Vincent and
Picard et al., 2018). Mutations in the mtDNA have previously
been implicated in cellular energy deficits that lead to ocular
degenerative disease (Yu-Wai-Man et al., 2011). Indeed, the
mitochondria can be considered as a “power plant” for the
cell, then it is expected that mitochondrial disorders tend to
affect more frequently tissues with high energy demand, such as
the retina, brain, muscles, heart, and endocrine systems (Wallace,

2010). A characteristic of the mitochondrial genome
(mtGenome) is that it accumulates mutations at a notably
faster rate than the nuclear genome. As a result, mtDNA is
highly polymorphic. Most likely, this characteristic can be
explained by two processes: the lack of protective histones and
repair mechanisms, which increase the replication errors, and,
given the proximity of mtDNA with the respiratory chain
complexes, the exposure to reactive oxygen species (ROS)
(Wallace, 2010; Lascaratos et al., 2012).

Many mitochondrial single-nucleotide polymorphisms
(mtSNPs) have become fixed in a variety of populations
during human evolution (Yu-Wai-Man et al., 2011; Collins
et al., 2016). Due to the exclusive maternal inheritance of
mtDNA and the fact that the mtGenome does not recombine,
mtSNPs are accumulating and co-transmitted through the
maternal lineages (Andersen and Balding et al., 2018). This
characteristic allows tracing specific, ancestral patterns of
human migration that occurred millennia ago, from Africa to
other continents. These specific polymorphic SNP-sets
accumulating on the mtDNA, allowed researchers to classify
human populations into various mtDNA ‘‘haplogroups”. There
are a total of nine known haplogroups that identify individuals
with European ancestry. These are named H, I, J, K, T, U, V, W,
and X, where haplogroup H represents about 40–45% of the total.
According to recent studies, specific haplogroups can influence
the development of diseases such as POAG, primary angle-
closure glaucoma, exfoliation glaucoma, as well as cancer,
diabetes, and late-onset neurodegenerative conditions
(Herrnstadt et al., 2002; Abu-Amero et al., 2008; van Oven
and Kayser, 2009; Abu-Amero et al., 2011a; Abu-Amero et al.,
2011b; Urzua-Traslavina and Carlos, 2014). The association
between mitochondrial haplogroups and POAG has been
investigated in few studies, with conflicting results: Andrews
et al. (2006), in a case-control comparison of 140 POAG
patients and 75 healthy individuals from England, did not find
a difference in the haplogroup distribution between cases and
controls (Andrews et al., 2006). In contrast, Collins et al. (2016)
found that in African populations the haplogroups L1c2, L1c2b,
and L2 were risk factors for POAG (Collins et al., 2016).

An important aspect in the pathophysiology of POAG and
similar optic neuropathies is represented by the increased
apoptosis of RGCs, and by the functional decay of the
trabecular meshwork (TM) (Izzotti et al., 2011; Almasieh
et al., 2012). RGCs contain a high number of mitochondria
related to their high energy demand. They are especially
vulnerable to oxidative damage caused by mitochondrial
dysfunction (Sanchez et al., 2016). Apart from POAG, several
other optic neuropathies show axonal RGC loss correlated with
mitochondrial dysfunction (Howell, 1997; Howell, 2003). Two
examples are Leber’s Hereditary Optic Neuropathy (LHON;
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OMIM 535000) and autosomal dominant optic atrophy (DOA;
OMIM 165500). While LHON is caused by three well-known
pathogenic mtDNA mutations in the MT-ND1, MT-ND4, and
MT-ND6 genes, DOA is caused by pathogenic mutations within
the nuclear OPA1 gene, which codes for a mitochondrial wall
membrane protein (Yu-Wai-Man et al., 2009; Wallace, 2010; Yu-
Wai-Man et al., 2011).

Next to mitochondrial damage in the RGCs, Izzotti and
coworkers investigated potential mitochondrial damage in the
TM, a tissue involved in POAG via its influence on IOP. By
comparing mtDNA deletions in TM from glaucoma patients and
controls by qRT-PCR, the authors observed that oxidative
damage arising from mitochondrial failure plays a role in the
functional decay of the TM (Izzotti et al., 2011). Another,
independent line of evidence for mitochondrial involvement in
POAG has come from investigations of glaucoma-prone mice:
retinal levels of nicotinamide adenine dinucleotide (NAD)
decreased with age, rendering neurons vulnerable to disease-
related insults. Interestingly, the administration of a redox
metabolite NAD+ and gene therapy of the expression of
Nmnat1, a key NAD + producing enzyme, had a protective
effect. At the highest dose tested, 93% of eyes did not develop
glaucoma symptomatology, compared to 50% for the control
group (Williams et al., 2017).

Given the hypothesis that RGCs degeneration and functional
decay of TM in POAG are influenced by mitochondrial
dysfunction, we aimed to explore whether POAG is associated
with variations in the mtGenome. To this purpose, we conducted
two different association analyses further described below. First,
we analyzed mtDNA SNPs in order to detect genetic variations
potentially associated with the disease. Second, we analyzed the
role of major haplogroups.

MATERIALS AND METHODS

Study Subjects
We performed our association analysis using two case-control
studies. The first case-control study consisted of glaucoma cases
from the Groningen Longitudinal Glaucoma Study (GLGS), of
which a subset of the POAG patients (see below) was genotyped
(n � 592) (Heeg et al., 2005). The controls (n � 1841) were
selected from the Lifelines Cohort Study and Biobank (LL) and
came from the same geographical region as the GLGS cases. This
cohort is addressed in this study as the GLGS-LL cohort. They
were age-matched with a 1:3 ratio, using the R package MatchIt
with nearest-neighbor matching (Ho et al., 2011). The second
case-control study consisted of glaucoma cases (n � 129) and
controls (n � 110) from the Amsterdam Glaucoma Study (AGS)
(Ramdas et al., 2011). All the participants were Dutch and of
European-ancestry.

The original GLGS cohort has been described in detail by Heeg
and colleagues (Heeg et al., 2005). After the inclusion of the initial
cohort in 2000–2001, the GLGS continued as a dynamic
population, that is, new participants were added during
follow-up. We included glaucoma patients who visited the
outpatient department of the UMCG in 2015 and who gave

written informed consent for a blood sample being taken for
genetic analyses. In the GLGS, glaucoma patients showed
glaucomatous visual field (VF) loss in at least one eye. For
glaucomatous baseline VF loss, two consecutive tests had to be
abnormal in at least one eye. Defects had to be compatible with
glaucoma and without any other explanation. A VF test before the
two baseline tests was discarded to reduce the influence of
learning. Those with pseudoexfoliative or pigment dispersion
glaucoma or a history of angle-closure or secondary glaucoma
were excluded for the current analysis, leaving only POAG
patients.

The LL is a multi-disciplinary prospective population-based
cohort study examining in a unique three-generation design the
health and health-related behaviours of 167,729 persons living in
the North of Netherlands. It employs a broad range of
investigative procedures in assessing the biomedical, socio-
demographic, behavioural, physical and psychological factors
which contribute to the health and disease of the general
population, with a special focus on multi-morbidity and
complex genetics. Participants completed questionnaires,
underwent physical examinations, and biological samples
including DNA were collected (Scholtens et al., 2015). For the
current study, we only included participants without glaucoma
and aged 60 years or older. Glaucoma phenotype was defined
using a questionnaire-based glaucoma proxy, a classification
algorithm built on questions regarding self-reported eye
diseases and glaucoma-specific visual complaints (Neustaeter
et al., 2020). Participants were classified as having definite,
probable, or possible glaucoma, or as healthy. Lifelines
controls used in this study were those individuals classified by
the proxy as healthy and from whom the genotyping data was
available.

The AGS study includes glaucoma cases and healthy controls
collected from eye clinics, meetings of the glaucoma patients’
association, nursing homes, and fairs for the elderly from all over
the Netherlands. The AGS patients underwent ophthalmoscopy
and biomicroscopy with a 90-diopter lens, and digital stereo
images of the optic nerve head were taken after mydriatic drops.
POAG cases had to have glaucomatous optic neuropathy vertical
cup-disc ratio (VCDR) > 0.7 with corresponding glaucomatous
visual field loss in at least one eye or a VCDR ≥ 0.8 when no visual
field was available (Ramdas et al., 2011). Control subjects from
the AGS cohort were selected from unrelated individuals, aged
60 years or older with a VCDR ≤ 0.6 on ophthalmoscopy and
fundus photography, and without eye abnormalities.

Genotyping
Genomic DNA was extracted from the peripheral blood and all
individuals were genotyped using the Illumina Infinium Global
Screening Array® (GSA) MultiEthnic Disease beadchip version.
This array contains approximately 700,000 SNPs and combines
multi-ethnic genome-wide content, curated clinical research
variants, and quality control (QC) markers. Specifically, for
the mtDNA, this array covers 140 mtDNA SNPs. For these
latter SNPs, the raw probe intensities were combined in one
dataset and called together with Opticall using the -MT option
(Shah et al., 2012). To obtain position, strand orientation, and
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reference allele of mtDNA for our data, we aligned the genotypes
with the Cambridge Reference Sequence (rCRS) (ENCODE
Project Consortium 2012). For further analysis, we considered
only variants that could be mapped perfectly with the reference
panel. Next, the following quality control (QC) criteria were
applied to SNPs level: 95% call rate per mtDNA SNP in the
combined set of case and control individuals and heterozygote
mitochondrial genotypes were set to missing, allowing only
homozygous calls. At DNA sample level the quality control
was first conducted in the autosomal chromosomes and
exclusion criteria were 1) duplicated sample, 2) excessive
heterozygosity rate, 3) sex discordance, 4) the presence of first
and/or second-degree relatives (pi-hat >0.20), and 5) non-
European ancestry.

The genotyping datasets of AGS and GLGS-LL were then
imputed in IMPUTE2 (Howie et al., 2009). Before the imputation,
monomorphic variants were removed and all samples were
assigned to male sex to allow haploid imputation. Then we
followed instructions for the imputation of chromosome X.
The reference panel used contained 36,960 sequences aligned
to mtDNA sequences (McInerney et al., 2021). Variants with
imputation quality score less than 0.3 and monomorphic variants
were excluded.

Statistical Analysis
To test for association of the mtDNA SNP markers with
glaucoma, logistic regressions were conducted separately
for GLGS-LL and AGS, with POAG as outcome and SNP
as independent variable, adjusting for age and sex. We choose
to analyze the two cohorts separately to avoid risk of batch
effects and false positive results caused by population
stratification. Only SNPs with a minor allele frequency
(MAF) > 1% were included in this analysis. To estimate the
risks of POAG, odds ratios (ORs) and 95% confidence
intervals (CIs) were calculated. Analyses were also
performed stratified by sex. The genetic analyses were
conducted using PLINK v1.90 (Purcell et al., 2007).
Subsequently, we combined the results of the two cohorts
by a fixed effects inverse variance weighted meta-analysis
using METAL software in which double genomic control
was applied (Willer et al., 2010).

A second association analysis was done in the two cohorts
separately on reconstructed haplogroups. Since the mtDNA does
not recombine, it behaves like a single locus with many alleles
making all variants correlated with each other. Mitochondrial
haplogroups were estimated from the directly genotyped variants
and the haplogroup of each individual was determined with
HaploGrep, available at https://haplogrep.i-med.ac.at/ (van
Oven and Kayser, 2009; Kloss-Brandstätter et al., 2011). All
140 mtDNA SNPs were entered for the haplogroup
determination, and each individual’s haplogroup was
determined based on PhyloTree build 17 (implemented in
HaploGrep 2.1.21.jar). We only included haplogroup
assignments with a quality score above 80% (determined by
HaploGrep), and with a frequency above 1% (van Oven and
Kayser, 2009; Kloss-Brandstätter et al., 2011). For the association
test, sub-haplogroups were first assigned to their respective major

haplogroups. We tested each haplogroup against haplogroup H,
which is the most common European haplogroup (22.9% in our
dataset; see Discussion section), as the reference using logistic
regression, adjusting for age and sex (Torroni and Wallace et al.,
1994). Chi-square analysis was conducted to determine the effect
of specified sub-haplogroup K (K1, K1a1, K1a11, K1a1b2a1,
K1a24a, K1a4a, K1a4a1a2a, K1b2a, and K1c1).

Given the hypothesis-free approach of our exploratory study
and the risk to test not independent SNPs due to high linkage
disequilibrium in mtDNA, we reported nominal significant
p-values (≤0.05) (Andersen and Balding et al., 2018). The
analyses were performed using RStudio.

Gene Expression
In order to evaluate gene expression of significant SNPs, we
queried the EyeIntegration database v1.05 (https://eyeintegration.
nei.nih.gov/) in cornea, retina, and retinal pigment epithelium
(RPE) (Bryan et al., 2018). This database is created by
investigators at the National Eye Institute (National Institutes
of Health) and contains publicly deposited RNA-seq datasets
from human ocular tissues (Bryan et al., 2018). Gene correlation
networks were constructed using the kWithin metric to measure
the connectivity. Genes with higher connectivity are,
theoretically, more likely to be important in gene regulation as
perturbations in them will affect the system more than less
connected genes. Identified genes, either those closest to
significant SNPs or resulting from the gene correlation
network, were queried in the Online Mendelian Inheritance in
Man (OMIM) database, to identify associated phenotypes
(Hamosh, 2004).

Ethics Statement
The study followed the tenets of the Declaration of Helsinki
and the ethics board of the University Medical Center of
Amsterdam (UMC) approved this research (METc
submission # 2013_327). All participants provided written
informed consent.

RESULTS

A total of 2,672 individuals were included. Table 1 shows the
demographics of both cohorts.

Single SNP Analysis
In total, 140 mtSNPs were initially screened on the DNA of our
case control populations. Forty SNPs in the GLGS-LL dataset and
39 SNPs in the AGS cohort passed the quality control criteria
previously mentioned (see Subjects and Methods section) and
were used for further analysis. In the GLGS-LL cohort we
excluded 51 SNPs that were monomorphic or had a low MAF.
We excluded 49 additional ones for a relatively high missing
genotype rate. In the AGS cohort, 101 mtDNA SNPs were
monomorphic or had a low MAF but we did not exclude any
SNP for high missing genotype rate. After imputation, 69 and 63
variants were retained in the GLGS-LL and AGS cohorts,
respectively.
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Logistic regression analyses were conducted separately in the
GLGS-LL and AGS datasets, where POAG was modelled as the
dependent variable and the genotyped variants as the
independent variable (Table 2).

These results were then meta-analyzed for 32 SNPs in
common between the two datasets, revealing nominal
associations in the mtDNA SNPs rs2853496 (p � 0.006) and

rs35788393 (p � 0.041) with POAG, in the sex combined cohorts
(Table 3).

Haplogroup Analysis
In addition to single SNP association analyses, we also
conducted an association test between mitochondrial
haplogroups and POAG. The inclusion threshold for this

TABLE 1 | Characteristics of the GLGS-LL and AGS cohorts.

GLGS-LL AGS

Cases (n = 592) Controls (n = 1841) Cases (n = 129) Controls (n = 110)

Age [median (IQR)] 73 (66, 80) 70 (68, 73) 73 (65, 79) 72 (68, 79)
Sex, female, n (%) 264 (44.5) 801 (43.5) 57 (44.1) 67 (60.9)

IQR: interquartile range.

TABLE 2 | Significant mtDNA single-nucleotide polymorphisms associated with POAG in the GLGS-LL and AGS cohorts, separated for sex.

Marker Single-
nucleotide

polymorphism

Nearest
gene

Effect
allele

No effect
allele

Frq* Case/
Control

Odds ratio (95% CI**) p-value

GLGS-LL

Both sex MitoG11915A rs2853496 MT-ND4 A G 0.006/ 0.023 0.27 (0.01–0.78) 0.015
Female MitoG11915A rs2853496 MT-ND4 A G 0.003/0.03 0.12 (0.016–0.88) 0.038
Male 2010–08-MT-723 rs879162984 D-loop A G 0.036/0.015 2.41 (1.12–5.2) 0.024

MitoA16163G rs41466049 MT-CYB G A 0.073/0.046 1.77 (1.06–2.96) 0.027

AGS

Both sex rs2853826 rs2853826 MT-ND3 G A 0.24/0.10 2.29 (1.11–4.69) 0.023
MitoT12706C rs193302956 MT-ND5 T C 0.11/0.045 3.53 (1.12–11.18) 0.031
MitoT491C rs28625645 D-loop C T 0.10/ 0.03 3.21 (1.001–10.34) 0.049

Female rs2853826 rs2853826 MT-ND3 G A 0.22/0.075 3.69 (1.22–11.17) 0.02

Abbreviations: *Frq, frequency of effect allele; **CI, confidence interval.

TABLE 3 | Nominal significant mtDNA SNPs associated with POAG from the meta-analysis of the GLGS-LL and AGS cohorts, conducted in both sexes.

SNP Position Gene Effect
allele

No
effect
allele

Odds
ratio

p-value Hetisq Hetpval

rs2853496 11,914 MT-ND4 A G 0.64 0.006 0 0.92
rs35788393 15,904 MT-CYB T C 0.75 0.041 0 0.93

SNP—single nucleotide polymorphism; Hetpval—heterogeneity p-values from Cochrane’s Q statistic; Hetisq—heterogeneity index (0–100%).

TABLE 4 | Haplogroup frequency distributions and their association with the risk of POAG.

Haplogroup Frq* females N (%) Frq* males N (%) Frq* cases N (%) Frq* controls N (%) Odds ratio 95% CI** p-value

H 31 (13.2) 23 (9.7) 20 (8.6) 34 (14.5) Reference Reference Reference
K 29 (12.3) 45 (19.2) 58 (24.6) 16 (6.8) 5.8 2.7–13.1 1.2 × 10-05
U 62 (26.4) 45 (19.2) 65 (27.7) 42 (17.8) 2.61 1.3–5.2 0.005

Abbreviations: *Frq, frequency of effect allele; **CI, confidence interval.
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analysis (see methods section) was reached by a total of 235
individuals, i.e., 143 cases and 92 controls from the two
cohorts that fulfilled the quality criteria. The identified
haplogroups were all assigned to one of the European
major haplogroups (H, K, and U). Table 4 summarizes
haplogroup frequency distributions for the cases and controls.

The haplogroup K showed an increased risk effect for POAG,
with an OR � 5.8 (95% CI � 2.7–13.1; p � 1.2 × 10−05) and the
haplogroup U an OR � 2.6 (95% CI � 1.3–5.2; p � 0.005). We
further observed that the haplogroup U was the most common
haplogroup (45.5%), followed by haplogroups K (31.4%) and H
(22.9%). None of these K sub-haplogroups showed any statistical
significance (data not shown). The haplogroup U is
phylogenetically connected with the haplogroup K, and was
also significantly associated with increased risk of POAG.
Therefore, we repeated our analysis combining the
haplogroups U and K in the UK cluster and found that UK
frequency also differed significantly from the control group (odds
ratio 3.5, 95% CI � 1.8–6.7; p � 0.00012).

Gene Expression
We queried the two genes located closest to the two identified
SNPs (MT-CYB and MT-ND4) for expression in ocular and
nonocular tissues in the EyeIntegration database. We found
the highest expression of both MT-CYB and MT-ND4 in the
following tissues, respectively: adult retina of 19.56 log2 (TPM +
1) and 20.60 log2 (TPM + 1), and RPE of 19.59 log2 (TPM + 1)
and 20.03 log2 (TPM + 1). The lowest gene expression was
reported in the cornea [11.50 log2 (TPM + 1) and 11.97 log2
(TPM + 1)] (Figure 1).

Gene expression levels of the genes MT-CYB and MT-ND4
according to the EyeIntegration database v1.05 for muscle
skeletal, whole blood, cornea, retina and RPE tissues.

We also queried in the EyeIntegration database v1.05 the
retina network to examine which genes were the most
connected in this network. In the retina network, MT-CYB
and MT-ND4 genes have high connectivity with the
POMGNT1 gene (kWithin � 18.447). Genes with higher
connectivity are, theoretically, more likely to be important in

FIGURE 1 | Gene expression of MT-CYB and MT-ND4 in different tissues. Gene expression levels of the genes MT-CYB and MT-ND4 according to the
EyeIntegration database v1.05 for muscle skeletal, whole blood, cornea, retina and RPE tissues.
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gene regulation because perturbations in them will affect more
the system compared to the effect in less connected genes. When
we queried the POMGNT1 gene in the OMIM database, we
identified eye phenotypes linked to muscular dystrophy-
dystroglycanopathy, in which patients have congenital
glaucoma and retinitis pigmentosa (Parton, 2003).

DISCUSSION

In this study, we investigated the possible involvement of genetic
variation in mitochondria in POAG, by performing an
association analysis for mitochondrial SNPs and haplogroups
in 721 patients with POAG and 1951 healthy individuals. Based
on evidence derived from combined analysis of our datasets, we
concluded that two mtSNPs (rs2853496 and rs35788393) are
nominal associated with POAG. Our data suggest that the A allele
of rs2853496, within the MT-ND4 gene, and the T allele of
rs35788393, located in the MT-CYB gene, have a protective
effect. With respect to mitochondrial haplogroups, our
analyses identified haplogroup K as highly associated with an
increased risk of POAG (OR � 5.8; 95% CI � 2.7–13.1; p � 1.2
× 10−5).

Our findings are consistent with evidence from the literature
that suggest a potential role of the mtGenome, and more
specifically of the genes MT-ND4 and MTCYB in optic
neuropathies or glaucoma (Cortopassi and Arnheim et al.,
1990; Votruba et al., 2004; Abu-Amero et al., 2006). The MT-
ND4 gene is a protein-coding gene located in the mtDNA,
encoding for subunit 4 of complex I (NADH ubiquinone
oxidoreductase) (MT-ND4, 2021). The complex I is the first
enzyme of the respiratory chain, a vulnerable site to oxidative
stress, also involved in cellular functions like apoptosis (Ferguson
et al., 1976). SNPs in subunit 4 ofMT-ND4 can affect the first step
of the electron transport chain. Therefore, these mutations may
have an impact on mitochondrial respiratory chain function and
could result in an alteration of the cellular energy metabolism.

Genetic variations in the MT-ND4 are implicated in other
optic neuropathies. This is the case of LHON, where one of the
most prevalent variants that accounts for more than 70% of all
cases is the m.11778G > A, located in the MT-ND4 gene (Yu-
Wai-Man et al., 2014; Mancuso and Klopstock et al., 2019).
LHON is one of the most common inherited optic
neuropathies and it is characterized by bilateral optic atrophy
and loss of central vision due to loss of RGCs (Sadun, 2002; Yu-
Wai-Man et al., 2011). MtDNAmutations associated with LHON
have also been described in animal models: mice with a mutation
in the mt-Nd4 gene show nerve atrophy and RGCs degeneration.
Both conditions are also characteristics of LHON in humans
(Divi et al., 2007; Koilkonda and Guy, 2011). In contrast to the
mitochondrial mutations identified in LHON cases, in the
mitochondrial genome of POAG patients the majority of the
mutations were somatic transversions (a replacement of a purine
with a pyrimidine, or vice versa), caused by the accumulation of
oxidative stress over time (Abu-Amero et al., 2006).

In this study, we also report an association between POAG and
the mtDNA variation rs35788393 in the MT-CYB gene. The

protein product of this gene is involved in the oxidative
phosphorylation system. This system is composed of five
complexes where the MT-CYB gene encodes for the
cytochrome b of complex III (that catalyzes the transfer of
electrons from ubiquinol to cytochrome c), the only one solely
encoded by a mitochondrial gene (Chaussenot et al., 2018).
Pathogenic mutations in the MT-CYB gene can disrupt the
normal activity of the electron transport chain and affect the
production of ATP by increasing the production of ROS. This
leads to damage of cellular proteins, lipids and nucleic acids via
oxidation reactions (West et al., 2011). So far, mutations in MT-
CYB have been associated with LHON, retinitis pigmentosa and
cataract (Brown et al., 1992; Wibrand et al., 2001; Schuelke et al.,
2002; Ronchi et al., 2011). Since the MT-CYB gene is involved in
the production of ATP in the electron transport chain, it is pivotal
to explore the possible role of this gene in POAG in future studies.

Genetic variations in both MT-CYB and MT-ND4 genes are
able to destabilize the so-called mitochondrial super complex: the
physical interaction between mitochondrial complex-I and
complex-III. The destabilization of this complex leads to the
loss of complex I activity, the major entry point for electrons to
the respiratory chain (Hudson et al., 2007). In transgenic mice,
loss of complex-I activity showed an increase of ROS levels in the
RCGs and optic nerve degeneration (Qi et al., 2003). In human,
glaucomatous TM cells have been reported to be more sensitive to
the inhibition of complex-I (Banerjee et al., 2013). Indeed,
damages in complex-I were observed to contribute to the
progressive loss of TM cells in POAG patients due to the
excessive mitochondrial ROS production and to the
attenuation of the mitochondrial membrane. This decrease
reduces the ATP synthesis, driving the cells towards apoptosis
(He et al., 2008). Another study comparing both POAG and
LHON lymphoblasts found an impairment of the complex-I,
where functional defects of this complex were milder in POAG
than LHON. This is in accordance with the less severe
development of the disease in POAG (Van Bergen et al.,
2015). However, more comprehensive investigations are still
necessary to define the regulatory function of complex-I that
in turn might lead to the increase of the oxidative stress and favor
the glaucomatous condition.

To add biological context to our study, we also evaluated
bioinformatically which genes were the most highly connected
with MT-CYB and MT-ND4 in the retina network (Bryan et al.,
2018). Genes highly connected indicate that they are more likely
to have an effect in gene regulation. By querying the retina
network, we implicated the POMGNT1 gene (protein
O-mannose beta-1,2-N-acetylglucosaminyltransferase-1).
POMGNT1 synthesizes a unique O-mannose sugar chain on
α-dystroglycan, the extracellular protein that binds laminin α2
in the extracellular matrix. Reported mutations in the POMGNT1
gene have enlightened its role in four genetic muscular dystrophy
disease entities: 1) Walker–Warburg syndrome (OMIM
#253280), 2) the muscle-eye-brain disease (OMIM #253280)—
for which patients show ocular symptoms as retinal degeneration,
optic atrophy and congenital glaucoma—3) congenital muscular
dystrophy with mental retardation (OMIM #613151), and 4)
retinitis pigmentosa (OMIM #606822) (Pihko et al., 1995;
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Yoshida et al., 2001; Godfrey et al., 2007; Clement et al., 2008;
Wang et al., 2016; Xu et al., 2016). The dystroglycan gene (DAG1)
encodes for α-dystroglycan and β-dystroglycan (Holt et al., 2000).
In the retina, dystroglycan is highly expressed inMüller glial, rods
and cones at the outer plexiform layer, and plays an important
role in retinal function and survival (Schmitz et al., 1993;
Montanaro et al., 1995; Blank et al., 1999; Jastrow et al., 2006).
The DAG1 gene is also linked to Muscular dystrophy-
dystroglycanopathy (congenital with brain and eye anomalies,
OMIM #616538). Using zebrafish animal models, Gupta et al.
demonstrated that dystroglycan deficiency caused abnormal
development of ganglion cells, lens, and cornea (Gupta et al.,
2011). In addition, in a consanguineous Israeli-Arab family a
homozygous loss-of-function mutation in the DAG1 gene was
detected in infants with a congenital phenotype consistent with
Walker–Warburg syndrome. Ocular features in those infants
included bilateral corneal opacity and glaucoma (Riemersma
et al., 2015). Taken together, these findings suggest that
dystroglycan deficiency is strongly correlated with eye
abnormalities, including glaucoma. In our view, further studies
on the role of DAG1 and POMGNT1 genes in the
pathomechanisms underlying POAG are warranted.

Another part of our current investigation in POAG was
focused on the analysis of potentially associated mtDNA
haplogroups. In order to interpret our results, it is
important to consider the variations reported in the
population distributions of mitochondrial haplotypes in
comparison with the frequencies identified in our study
(Torroni and Wallace, 1994). A study conducted in the
Netherlands in 680 individuals randomly selected identified
that the most common haplogroup was H (45.3%), followed
by haplogroups U (25.6%), T (11.6%), J (10.7%) and K (6.3%)
(Chaitanya et al., 2016). These frequencies, when present in
our POAG dataset, differed from those reported in the general
population. Regarding the haplogroup H, it is important to
point out that it shows a complex variation with many sub-
lineages. In our study, we used data generated by a SNP-chip
array, which is able to detect sites that are polymorphic in
populations. Therefore, the differences in frequency reported
here for the haplogroup H can be attributed to the absence of
sites that allows an accurate classification (Loogväli et al.,
2004; Pereira et al., 2005). In our study, haplogroup K was the
most significant association with POAG. Considering that
haplogroup K occurs approximately in 8% of European and
6% in Dutch individuals, we reported a higher frequency of
this haplogroup in our POAG cases (24.6%) compared to
controls (6.8%). In line with our findings, a meta-analysis
conducted in 3,613 individuals affected by LHON from 159
European pedigrees indicated that the risk of visual loss was
higher in carriers of the mitochondrial haplogroup K:
individual carriers of haplogroup K were more exposed to
experience visual loss, whereas individuals carriers of
haplogroup H had a lower risk of visual loss (Hudson
et al., 2007). The haplogroup association in our study
showed a similar outcome: individuals with haplogroup K
had a higher risk to develop POAG compared to individuals
belonging to haplogroup H. We also observed that the UK

cluster shows the same direction of risk. Interestingly, studies
conducted in cybrids showed that haplogroup UK are
associated with less levels of mitochondrial protein
synthesis and respiratory complex IV activities than cybrids
from haplogroup H (Gómez-Durán et al., 2010). Therefore,
also supported by previous studies, we speculate on the
possible link of the mtGenome in the pathogenesis of
POAG (Abu-Amero et al., 2011b; Bosley et al., 2011;
Collins et al., 2016; Singh et al., 2018). In contrast, a few
studies reported that mitochondrial haplogroups did not
contribute to the pathogenesis of POAG. Negative
associations were found in POAG cohorts from the north
east of England, Saudi Arabia and Ghana (Andrews et al.,
2006; Abu-Amero et al., 2008, 2012). Combining our data
with those of the literature, there is evidence that
mitochondrial haplotypes K plays a role in the
pathogenesis of POAG, at least in some populations.

Strengths and Limitations
Our study had several strengths and limitations. Strong points are: the
AGS and GLGS datasets are well defined in terms of diagnosis,
design, andmethod of investigation. In fact, these datasets are clinical
cohorts, in which POAG patients received diagnoses by experienced
physicians, following strict criteria. In addition, the cohorts used in
this studywere genotyped on the same array and have been processed
applying the same quality control procedures. There are also a
number of limitations: first, by nature of the study, we focused
only on homoplasmic mtDNA variations, detected in blood but not
in potentially relevant ocular tissues. Furthermore, we cannot exclude
potential additional influence of nuclear DNA of mitochondrial
origin, other genetic variations elsewhere or non-genetic factors.
Second, we performed our analyses in samples of European
ancestry and for this reason our findings are not, without more
research, transferable to other populations. Third, replications in
other populations of our results are necessary to corroborate their
association with POAG.

CONCLUSION

In our study, we identified associations between mitochondrial
polymorphisms in the MT-ND4 and MT-CYB genes and POAG,
and reported that individuals carrying mtDNA haplogroup K
were at the highest risk of developing this eye disease. Our
findings support the hypothesis that mitochondria have a role
in the pathogenesis of POAG. Nonetheless, further genetic and
functional studies are still required to highlight the role of
mitochondrial genes, in relation to POAG pathophysiology.
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