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This paper considers the scheduling problem of minimizing the weighted number of early and tardy 
jobs on identical parallel machines, Pm||∑wj(Uj + Vj). This problem is known to be NP complete and 
finding an optimal solution is unlikely. Six meta-heuristics including hybrids are proposed for solving 
the problem. The meta-heuristics considered are genetic algorithm, particle swarm optimization and 
simulated annealing with their hybrids. A comparative study that involves computational experiments 
and statistical analysis are presented evaluating these algorithms. The results of the research are very 
promising.  
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INTRODUCTION 
 
Scheduling Just-In-Time (JIT) jobs is of great importance 
in both manufacturing and service industries. Production 
wastages are reduced and profitability is improved when 
JIT is applied. Its application cuts across medical, 
machine environment, distribution network and other 
environments. In this paper, we consider the comparative 
study of various heuristics for scheduling weighted jobs 
on identical parallel machines. The objective is to 
minimize the weighted number of early and tardy jobs on 
identical parallel machines. 

During the past few decades, a considerable amount of 
work has been done on scheduling on multiple machines 
to minimize the number of tardy jobs (Adamu and 
Adewunmi, 2012b) and on single machine (Adamu and 
Adewunmi, 2012c). Garey and Johnson (1979) have 
shown our problem to be NP-complete and finding an 
optimal solution appears unlikely. Using the three-field 
notation of Graham et al. (1979), the problem is 
represented as Pm||∑wj(Uj + Vj). Scheduling to minimize 
the (weighted) number of tardy jobs have been 
considered by Ho and Chang (1995), Süer et al. (1993), 
Süer (1997), Süer et al. (1997),  Van  der  Akker   (1999), 

Chen and Powell (1999), Liu and Wu (2003), and 
M’Hallah and Bulfin (2005). Sevaux and Thomin (2001) 
addressed the NP-hard problem to minimize the weighted 
number of late jobs with release time (P|rj|∑wjUj). They 
presented several approaches for the problem including 
two MILP formulations for exact resolution and various 
heuristics and meta-heuristics to solve large size 
instances. They compared their results to that of Baptiste 
et al. (2000) which performed averagely better. Baptiste 
et al. (2000) used a constraint based method to explore 
the solution space and give good results on small 
problems (n < 50). Dauzère-Pérès and Sevaux (1999) 
determined conditions that must be satisfied by at least 
one optimal sequence for the problem of minimizing the 
weighted number of late jobs on a single machine. 
Sevaux and Sörensen (2005) proposed a variable 
neighbourhood search (VNS) algorithm in which a tabu 
search algorithm is embedded as a local search operator. 
The approach was compared to an exact method by 
Baptiste et al. (2000). Li (1995) addressed the 
P|agreeable due dates |∑Uj problem. Where the due 
dates and release times are assumed to be agreeable.  A  
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heuristic algorithm is presented and a dynamic 
programming lower bounding procedure developed. 
Hiraishi et al. (2003) addressed the non preemptive 
scheduling of n jobs that are completed exactly at their 
due dates. They showed this problem is polynomially 
solvable even if positive set-up is allowed. Sung and 
Vlach (2001) showed that when the number of machines 
is fixed, the weighted problem considered by Hirashi et 
al. (2003) is solvable in polynomial time (exponential in 
the number of machines) no matter  whether the parallel 
machines are identical, uniform or unrelated. However, 
when the number of machines is part of the input, the 
unrelated parallel machine case of the problem becomes 
strongly NP-hard. Lann and Mosheiov (2003) provided a 
simple greedy O(n log n) algorithm to solve the problem 
of Hiraishi et al. (2003) greatly improving in the time 
complexity. Čepek and Sung (2005) considered the same 
problem of Hiraishi et al. (2003) where they corrected the 
greedy algorithm of Lann and Mosheiov (2003) that was 
wrong and presented a new quadratic time algorithm 
which solved the problem. Adamu and Abass (2010) 
proposed four greedy heuristics for the Pm||∑wj (Uj + Vj) 
problem and extensive computational experiments 
performed. Janiak et al. (2009) studied the problem of 
scheduling n jobs on m identical parallel machines, in 
which for each job a distinct due window is given and the 
processing time is unit time to minimize the weighted 
number of early and tardy jobs. They gave an O(n

5
) 

complexity for solving the problem (Pm|pj = 1 |∑wj(Uj + 
Vj). They also consider a special case with agreeable 
earliness and tardiness weights where they gave on 
O(n

3
) complexity (Pm|pj = 1, rj, agreeable ET 

weights|∑wj(Uj + Vj)). Adamu and Adewunmi (2012a) 
compared the heuristics of Adamu and Abass (2010) with 
some metaheuristics. 
 
 
PROBLEM FORMULATION 
 

A set of independent jobs N = {1,2, . . . , n} has to be 
processed on m parallel identical machines, which are 
simultaneously available from time zero, each having an 
interval rather than a point in time, called due window of 
the job. The left end and the right end of the window are 
respectively called the earliest due date (that is, the 
instant at which a job becomes available for delivery), 
and the latest due date (that is, the instant by which 
processing or delivery of a job must be completed). There 
is no penalty when a job is completed within the due 
window, but for earliness or tardiness, penalty is incurred 
when a job is completed before the earliest due date or 
after the latest due date. Each job jє N has a processing 
time pj, earliest due date aj, latest due date dj and a 
weight wj. it is assumed that there is no preemptions and 
only one job is allowed to be processed on a given 
machine at any given time. For any schedule S, let tij and 
Cij(S) = tij +pj represent the actual start time on a given 
machine   and   completion  time  of  job  j  on  machine  i, 

 
 
 
 
respectively. Job j is said to be early if Cij(S) < aj, tardy if 
Cij(S) > dj and on-time if aj ≤ Cij(S) ≤ dj. For any job j, the 
weighted number of early and tardy jobs (Liu and Wu, 
2003)  
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and that int is the operation of making an integer. 
Obviously, 
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Therefore, the scheduling problem of minimizing the 
weighted number of tardy jobs on identical parallel 
machines can be formulated as G. 
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HEURISTIC AND META-HEURISTICS 
 
Greedy heuristic 
 

Adamu and Abass (2010) have proposed four greedy heuristics 
which attempt to provide near optimal solutions to the parallel 

machine scheduling problem. In this paper the fourth heuristic 
(DO2) would be use. It entails sorting the jobs according to their 
latest due date (that is, latest due time - processing time) and ties 
broken by the highest weighted processing time is used (that is, 
weight / processing time). 

Results of these greedy heuristics are encouraging; however it 
will be further investigated whether using meta-heuristics and their 
hybrids can achieve better results. 
 

 
Genetic algorithm 
 

Genetic algorithms (GAs) are one of the best known meta-heuristics 
for solving optimization problems. GAs are loosely based on 
evolution in nature and use strategies such as survival of the fittest, 
genetic crossover and mutation. Since GAs usually have a high 

performance and also use a population based technique, it was 
decided to investigate their comparative performance with the 
greedy heuristics. 



 
 
 
 
Problem representation 
 
Deciding on a suitable representation is one of the most important 
aspects of a GA. It was decided that each job would be fixed to a 

gene in the chromosome – implying that the chromosome has 
length n (where n is the number of jobs). Each gene would also 
have a machine number (the number of the machine to which the 
job will be assigned) and an order (a value between 1 and n 
representing the order in which jobs assigned to the same machine 
will be executed). Genetic operators would then need to be applied 
to both the machine number and the order. 

 
 
Algorithm 

 
A basic pseudo code of the genetic algorithm found in Adamu and 
Adewunmi (2012a) was used.  
 
 
Fitness function 

 
The fitness function calculates the sum of the weights of jobs which 
could not be assigned onto any of the machines so that they would 
finish within the earliest due and latest due dates. For each 
machine, jobs which are assigned to it are placed in a priority 
queue (which bases priority on their respective order). Each job is 
then removed from the queue and placed on the machine. If the job 
was to finish early, then it would be scheduled to begin later (at 
earliest due date -processing time) in order to avoid the earliness 
penalty. However, if the job was to finish past the end time, then it 
would not be scheduled at all and instead would have its weight 
added to the total penalty (fitness). One final, important aspect to 
note is that a lower fitness function implies a better performance. 
 
 
Genetic operators 

 
Genetic algorithms have a large number of operators available to 
them as well as different implementations of the operators which 
may be useful in different situations. In the initial version of the GA, 
the following operators were used: 1-point crossover for machines, 
conventional mutation for machines (that is, choose a random 

machine between 0 and m-1 inclusive), swap mutation for the 
execution order (since naturally this is permutation based) and 
tournament selection. However, since there are no guarantees that 
these operators allowed for the best performance, further 
experimentation with variations of these operators was performed. 
More details will be given subsequently. 
 
 
Particle swarm optimization (PSO) 

 
Particle swarm optimization was chosen to attempt to solve the 
parallel machine scheduling problem. It is a population based 
technique derived from the flocking behaviour of birds which relies 
on both the particle’s best position found so far as well as the entire 
population’s best position to get out of local optimums and to find 

the global optimum. PSO is appropriate to use for parallel machine 
scheduling because not much is known about the solution 
landscape and so PSO may be useful to get out local optimums to 
find the global optimum. 
 
 
Problem representation 
 

The PSO algorithm requires that a representation of the solution (or 
encoding of the solution) is chosen. Each particle will be instances 
of the chosen representation. A complication is that PSO  works  in  
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the continuous space whereas the scheduling problem is a discrete 
problem. Thus, a method is needed to convert from the continuous 
space to the discrete space. The representation is as follows: 
 

(i) Each particle contains a number between 0 (inclusive) and the 
number of machines (exclusive). This number represents the 
machine on which the particle is scheduled and is simply truncated 
to convert to the discrete space. 
(ii) Each particle contains a number between 0 (inclusive) and 1 
(exclusive). This number represents the order of scheduling relative 
to the other particles on the same machine where a lower number 

indicates that that job will be scheduled before the jobs with higher 
numbers. 
 
 

Algorithm 
 

A basic pseudo code of the PSO found in Adamu and Adewunmi 
(2012a) was used. 
 

 

Fitness function 
 

Finally, a method is needed to convert the encoding into a valid 
schedule (this is performed when calculating the fitness).  

This is performed by separating the jobs into groups based on 
the machine to which they are assigned. Within a group, the jobs 

are sorted by their order parameter and organized into a queue. 
The schedule for a particular machine is then formed by removing 
jobs from the queue and scheduling them as early as possible 
without breaking the earliness constraint. The weights of jobs that 
cannot be scheduled are totaled as the fitness of the solution 
(which would ideally be as small as possible).  
 

 
Simulated annealing  
 

Simulated annealing (SA) was chosen as a meta-heuristic which 
could solve the parallel machine scheduling problem. Simulated 
annealing is based on real-life annealing, where the heating of 
metals allows for atoms to move from their initial position and the 
cooling allows for the atoms to settle in new optimal positions. SA is 

not a population based heuristic – thus only one solution is kept at 
any one stage. Since SA should result in less operations being 
performed with respect to a population based technique, execution 
times may be quicker. It is this reason why SA was chosen for 
investigation.  

It should also be noted that simulated annealing will in all 
likelihood achieve better results than a simple hill-climbing 
technique. This is because SA can take downward steps (that is, 
accept worse solutions) in order to obtain greater exploration. Thus, 
it is less likely to become stuck in a local minimum (a very real 
problem given the complex solution space).  
 
 

Problem representation 
 

The representation is remarkably similar to that used in the GA. A 

solution consists of n elements (where n is the number of jobs). 
Each element has a specific job as well as the machine onto which 
it will be assigned and the order of assignment. Perhaps the major 
difference between them is that the GA has a population of 
solutions (chromosomes) whereas SA focuses on a single solution. 
 
 

Algorithm 
 

A basic algorithm used in the SA [found in Adamu and Adewunmi 
(2012a)] technique: 
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Fitness function 
 
Since, the solution is represented in virtually the exact same 
manner as a chromosome in the GA and a particle in PSO, the 

fitness function is calculated in the same manner. That is, jobs 
pertaining to a particular machine are placed in a priority queue 
before being assigned onto the machine. Those which cannot be 
assigned contribute towards the penalty. 
 
 
Operators 

 
Although, simulated annealing does not really have operators (in 
the sense of a GA having genetic operators), the SA algorithm does 
has to select a neighbor. The particular neighbor selection strategy 
that is used updates only a single element of the solution. The 
element is given a new randomly chosen machine and a new order 
(done by swapping with the order of another randomly chosen 
element). By allowing for a high level of randomness when 
selecting the neighbor, it will be ensured that good exploration will 
be achieved and that a local best is not found too early. 
 
 
COMPUTATIONAL ANALYSIS AND RESULTS 
 

Date generation 
 

The program was written in Java using Eclipse. It actually 
consists of a number of programs, each one 
implementing a different type of solution. The output of 
each of these programs gives the final fitness after the 
algorithm has been performed and the time in 
milliseconds that the algorithm took to run.  

The heuristics were tested on problems generated with 
100, 200, 300 and 400 jobs similar to Adamu and Abass 
(2010), Ho and Chang (1995), Baptiste et al. (2000), and 
M’Hallah and Bulfin (2005). The number of machines was 
set at levels of 2, 5, 10, 15 and 20.  For each job j, an 
integer processing time pj was randomly generated in the 
interval (1, 99). Two parameters, k1 and k2 (levels of 
Traffic Congestion Ratio) were taken from the set {1, 5, 
10, 20}. For the data to depend on the number of jobs n, 
the integer earliest due date (aj) was randomly generated 
in the interval (0, n / (m * k1)), and the integer latest due 
date (dj) was randomly generated in the interval (aj + pj, aj 
+ pj + (2 * n * p) / (m * k2)).  

For each combination of n, k1 and k2, 10 instances 
were generated, that is, for each value of n, 160 
instances were generated with a weight randomly chosen 
in interval (1, 10) for 8000 problems of 50 replications. 
The meta-heuristics were implemented on a Pentium 
Dual 1.86 GHz, 782 MHz, and 1.99 GB of Ram. The 
following meta-heuristics were analyzed GA, PSO, SA, 
GA Hybrid, PSO Hybrid, PSOGA Hybrid and SA Hybrid. 
 
 

Improvements  
 

Genetic algorithms are different from many other meta-
heuristics in that they have different genetic operators 
which can be tried and tested – rather than simply 
changing parameters. The original GA which  was  tested 

 
 
 
 
used 1-point crossover, random mutation for machines, 
swap mutation for order and tournament selection. It was 
decided to try other combinations of operators in order to 
see if performance could be increased. For this reason, 
roulette-wheel selection, uniform crossover and insert 
mutation (for order) were all programmed. A user would 
then be able to choose any combination of operators to 
use for their own GA. More information on the optimal 
combination of genetic operators will be mentioned 
subsequently in the parameters. 
 
 

Greedy hybrids 
 

Once the meta-heuristics (GA, PSO and SA) had been 
programmed, it was thought that improvements on them 
could potentially be made if they somehow included 
aspects or features from the greedy heuristic used by 
Adamu and Abass (2010). It was clear from the works of 
Adamu and Abass (2010) that the key to the greedy 
heuristics was in the order in which jobs were assigned to 
machines. So the mechanisms of ordering in DO2 
needed to be incorporated in the meta-heuristics (GA, 
PSO, SA). 

To implement the hybridization in the 3 meta-heuristics, 
the order field was removed from Gene, Dimension and 
Element respectively. Also, any code in Chromosome, 
Particle and Solution which dealt with the order (for 
example, swap mutation in Chromosome) was removed.  
 

 

Parameters  
 

For each solutions strategy, there are a number of 
different parameters that affect the performance of the 
algorithm such as population size, mutation rate, initial 
temperature, etc. These parameters needed to be 
experimentally determined and so the algorithms were 
run manually on a subset of all the testing data in order to 
determine the optimal parameters. This involved 
experimenting with the full range of each parameter and 
recording and tabulating the results achieved. The 
combination of parameters that gave the best 
performance was selected as the optimal parameters.  
 

The optimal parameters for the genetic algorithm are: 
 

(i) A population size of 10. 
(ii) Random mutation (for machines) used at a rate of 
0.01.  
(iii) Swap mutation (for order) used at a rate of 0.01.  
(iv) Uniform crossover at a rate of 0.5.  
(v) Tournament selection with a k set at 40% of the 
population size.  
(vi) The number of iterations of the algorithm was set at 
2000. 
 

Further to the above parameters, the genetic algorithm 
hybrid achieved best results when hybridized with the 
DO2 greedy heuristic. 



 
 
 
 

The optimal parameters for particle swarm optimization 
are: 
 

(i) A population size of 50.  
(ii) A w (momentum value) of 0.3.  
(iii) A c1 of 2.  
(iv) A c2 of 2.  
(v) The number of iterations of the algorithm was set at 
2000.  
 

Further to the above parameters, the particle swarm 
optimization hybrid achieved best results when hybridized 
with the DO2 greedy heuristic.  
 

The optimal parameters for simulated annealing are: 
 

(I) An initial temperature of 25. 
(ii) A final temperature of 0.01. 
(iii) A geometrical decreasing factor (beta) of 0.999. 
 

Further to the above parameters, the simulated annealing 
hybrid achieved best results when hybridized with the 
DO2 greedy heuristic.  
 
 

DISCUSSION 
 

In this part of the work, the results of the algorithms are 
shown, including the hybridizations. In the four columns 
shown in Table 1, each cell consists of two numbers. The 
top number is the weight of the schedule that is 
produced, averaged over 50 runs. The bottom number is 
the average time in milliseconds that the algorithm takes 
to complete.  

Also included are four charts each for the performance 
of the meta-heuristics in relation to the penalty (Figure 1) 
and time (Figure 2) for N= 100, 200, 300 and 400. Figure 
1 compares the relative performance (penalty) of each of 
the 6 algorithms compared to the number of machines 
used. Again, four charts are given to show the 
computational times of the meta-heuristics for various 
values of N. It should be clear from both the Table 1 and 
the charts that the Simulated Annealing Hybrid (SAH) out 
performed the other meta-heuristics in almost all points 
and the over all lowest time averagely less than a 
second. It was observed the various hybrids performed 
better than their meta-heuristic without it. It further proves 
the effectiveness of hybridization on the meta-heuristics. 

The Genetic algorithm (GA) performed worst compared 
to other meta-heuristics in all of the categories 
considered for all N jobs and M machines. The GA time is 
averagely 2.8 s, far slower than the SAH – notably 
because it keeps track of a population of individual 
solutions. Results show it to be in the region of 2.8 times 
slower compared to SAH. 

The genetic algorithm which is hybridized with DO2 
(GAH) achieves better results (Table 1 and Figure 1) 
compared to the simple genetic algorithm (GA) on all of 
the test cases. In all cases considered, the GAH 
outperform   the   ordinary   GA   and  as  the  value  of  N 
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increases the performance rate of GAH over GA widens. 
For larger values of N the performance of GAH is almost 
equivalent if not better than SAH. GAH takes on average 
about 2.77 s. GAH would be ideal for larger values of N 
where an optimal solution is not readily feasible.  

The particle swarm optimization (PSO) and the hybrid 
PSO (PSOH) produce lower weight compared to the GA. 
Furthermore, they are far slower than all the meta-
heuristics considered (over 14.4 times slower for PSO 
and 10.5 for PSOH in relation to SAH). This is 
understandable since PSO is a population-based 
algorithm so there is a lot of work being done at each 
step. Hybridizing particle swarm optimization with the 
DO2 greedy heuristic produces results which are better 
than PSO for all cases. The PSOH is also about 1.37 
times faster than PSO.  

The results for simulated annealing (SA) are far better 
on the average than those GA, PSO and PSOH both in 
performance of penalty and time (Tables 1 and 2 and 
Figures 1 and 2). On average, SA takes 1 s to run. 
However, it is about 2.8, 2.77, 14.4 and 10.5 times 
quicker than the GA, GAH, PSO and PSOH respectively 
(Table 5).  

Hybridizing simulated annealing with the DO2 greedy 
heuristic (SAH) produces results that are slightly better 
than the SA solution for all cases considered. It produces 
the overall best results among the meta-heuristics in 
terms of performance in relation to penalty and time. The 
average timing is a little less than a second.  

Further statistical analysis are carried out for both the 
penalty and timing of the various algorithms. Test of 
homogeneity of variances, ANOVA test, multiple 
comparisons test and homogeneous subsets are 
considered. Tables 2 to 4 are for the penalty performance 
and time performance. For the penalty performance, it is 
discovered that the variances of the penalties are not 
significantly different. Table 2 presents the ANOVA table 
for penalties. The means of the meta-heuristics are 
significantly different from one another, that is, they do 
not have equal means. Due to equality of their variances, 
subsets of homogeneous groups are displayed in Table 3 
using Scheffe’s method. Four groups are obtained: group 
1—SAH, GAH and SA, group 2—GAH, SA and PSOH, 
group 3 – PSOH and PSO, and group 4 – GA. These 
groups are arranged in decreasing order of their 
effectiveness. The worst among them is the GA. 
Similarly, for the time performance, Table 4 shows the 
ANOVA table for the test of equality of the mean time of 
the meta-heuristics which are also significantly different. 

This implies that timings for the various algorithms are 
not the same. PSO and PSOH have the highest time of 
14. 4 and 10.5 s respectively. While the lowest of about 1 
s for both SA and SAH. 
 
 

Conclusion  
 

This  paper  presents  results  on  scheduling  on identical
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Table 1. Performance of Meta-heuristics for different N. 

 

  

M=2 M=5 M=10 M=15 M=20 

MIN AVE MAX MIN AVE MAX MIN AVE MAX MIN AVE MAX MIN AVE MAX 

N=100 

GA 
593 655.72 730 525 610.68 700 510 558.06 628 458 522.42 557 444 519.22 603 

1906 3404.18 5844 4265 4962.46 5921 4218 4897.44 5937 4235 4942.52 5938 4328 5091.82 6218 

GAH 
313 374.78 444 257 340.22 397 244 304.78 385 197 261.2 323 202 268.76 309 

2750 2947.88 3266 2640 2826.58 3125 2485 2667.54 2953 2484 2674.44 3078 2843 3048.78 3360 

PSO  
385 459.9 559 339 482.84 583 352 470.16 559 419 455.74 512 425 477.48 549 

13516 14506.84 29969 13188 14182.52 25578 13047 14038.78 27688 13218 14291.92 26968 13516 14554.38 28578 

PSOH 
309 374.76 474 289 432.4 511 308 450.56 550 304 438.08 484 342 413.22 472 

10125 10785.3 11531 9750 10357.54 11172 9390 10139.38 13453 9578 10346.24 19688 10735 11605.54 20531 

SA 
330 378.38 441 294 348.6 417 242 297.02 366 188 247.92 292 216 262.94 317 

421 470.08 547 406 884.64 1375 875 1083.78 1359 907 1092.8 1344 937 1127.8 1531 

SAH 
342 397.94 473 246 315.14 380 200 258.44 329 167 211.82 274 173 231.52 282 

532 584.36 657 500 529.52 578 453 487.22 563 453 495.32 562 531 574.1 656 
                

 N=200 

GA 
535 605.24 717 475 544.34 635 418 482.1 538 387 439.78 535 357 408.18 465 

3297 5051 6188 1843 1982.46 2265 1812 1967.26 2328 1812 1963.82 2156 1859 2011.86 2329 

GAH 
124 180.22 247 99 163.72 240 92 146.74 220 75 129.24 171 69 107.22 161 

2734 2956.4 3313 2625 2796.28 3078 2453 2650.34 2953 2468 2629.22 2875 2484 2673.74 3015 

PSO 
285 345.68 410 312 358.06 448 188 361.34 438 225 354.64 420 300 354.52 409 

13406 14314.02 19063 13172 13979.1 15266 13078 13795.56 14829 13172 13949.72 14921 13484 14203.38 15062 

PSOH 
127 181.36 225 190 257.36 318 184 301.18 344 197 302.32 360 265 303.38 341 

10187 10841.88 16500 9672 10437.5 19250 9422 10144.36 17766 9484 10185.36 18485 9562 10376.2 17328 

SA 
157 231.2 289 162 206.5 272 93 170.5 230 103 139.48 189 78 108.22 155 

984 1174.36 1438 922 1116.52 1469 875 1074.72 1328 891 1103.5 1390 937 1121.2 1422 

SAH 
138 190.74 277 93 144.18 210 58 116.5 173 60 91.4 140 35 66.74 115 

547 1232.94 1672 1093 1331.58 1656 453 510.6 1282 431 488.72 578 453 880.02 1375 
                

        N=300        

GA 
475 591.46 665 463 520.6 583 386 449.34 540 319 400.3 469 323 371.86 451 

1906 2064.98 2359 1859 1987.52 2438 1813 1961.62 2531 1812 1993.14 2281 1875 2036.58 2922 

GAH 
33 85.06 146 23 68.24 120 27 61.5 139 25 50.16 95 16 42.72 78 

2750 2964.08 3437 2594 2837.8 4672 2469 2649.78 3735 2453 2657.44 4594 2453 2653.4 3359 

PSO 
228 304.32 392 210 298.02 383 162 306.24 379 234 306.7 377 165 309.72 384 

13422 14430.36 25984 13234 14209.66 27000 13109 14092.14 28438 13281 14214.64 26313 13453 14439.7 25375 
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Table 1. Contd. 

 

PSOH 
36 84.14 165 100 154.42 211 70 196.2 268 144 209.3 267 167 215.44 264 

10000 10703.48 11547 9656 10202.08 10984 9344 9937.72 10734 9375 9990.48 10766 9516 10167.48 11062 

SA 
96 164.22 237 92 130.72 195 53 102.34 169 50 79.16 136 33 61.74 87 

984 1185.98 1453 922 1115.34 1375 875 1079.92 1438 906 1079.66 1406 937 1142.32 1407 

SAH 
23 88.68 171 24 61.22 112 13 43.28 108 12 30.54 65 5 21.24 42 

1219 1445.26 1672 1078 1329.92 1656 1016 1216.54 1547 1000 1200.98 1563 1031 1216.58 1484 

                

        N=400        

GA 
483 573.08 668 413 496.28 589 316 424.66 485 308 368.82 483 290 340.28 410 

1906 2056.46 2625 1843 2002.46 3218 1813 1980.1 3125 1828 1994.6 2718 1875 2035.32 2610 

GAH 
0 28.42 67 0 17.86 45 1 16.04 81 0 9.76 29 0 9 29 

2719 2939.6 3718 2609 2802.28 3453 2422 2609.76 2750 2485 2643.16 4157 2454 2684.06 4500 

PSO 
204 285.2 362 183 257.7 349 119 262.04 356 187 265.8 330 228 274.32 319 

13406 14165.64 15157 13172 15126.54 27078 13015 14900 36375 13203 15070.32 36969 13468 15490.76 32828 

PSOH 
2 25.84 56 27 80.52 122 6 116.62 189 32 135.3 195 33 146.64 199 

9937 10654.98 11625 9594 10375.08 18703 9344 11234.38 27438 9266 11292.5 28157 9453 10294.68 18750 

SA 
82 124.62 184 29 82.3 157 22 58.46 98 12 39.42 64 6 29.5 59 

985 1109 1453 921 1112.82 1547 875 1064.52 1282 907 1106.44 1484 937 1149.38 1500 

SAH 
1 29.48 84 2 16.44 48 0 11.36 53 0 4.9 19 0 2.62 15 

1219 1459.4 1781 1093 1320.86 1735 1015 1192.86 1453 1016 1188.22 1609 1015 1220.66 1625 

 
 
 

Table 2. ANOVA. 

 

Penalty Sum of squares df Mean square F Sig. 

Between groups 2170218.657 5 434043.731 37.688 0.000 

Within groups 1312911.671 114 11516.769   

Total 3483130.328 119    

 
 
 
parallel machines with the objective of minimizing 
the weighted number of early and tardy jobs. Six 
meta-heuristics including hybridization are 
proposed   for   solving   the   problem.  Extensive 

computational experiments are performed to 
analyze these meta-heuristics. It was observed 
that the simulated annealing hybrid gives the best 
result  both  in  performance  and  timing while the 

genetic algorithm was the worst among them in 
performance. Further research will focus on 
comparing these results with optimal solutions 
and  considering  other  machine environment like
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Figure 1. Meta-heuristics performance in relation to penalty. 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Performance Time of the Meta-heuristics. 
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Figure 2. Performance time of the meta-heuristics. 
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Table 3. Homogeneous subsets using Scheffe’s
 
method (Harmonic mean sample size = 20.000). 

 

Heuristics 

Penalty 

N 
Subset for alpha = 0.05 

1 2 3 4 

SAH 20 116.7090    

GAH 20 133.2820 133.2820   

SA 20 163.1620 163.1620   

PSOH 20  240.9520 240.9520  

PSO 20   349.5210  

GA 20    494.1210 

Sig.  0.865 0.082 0.077 1.000 
 

Means for groups in homogeneous subsets are displayed. 

 
 
 

Table 4. ANOVA. 
 

Time Sum of Squares df Mean square F Sig. 

Between Groups 3.175E9 5 6.350E8 1634.682 0.000 

Within Groups 4.429E7 114 388468.477   

Total 3.219E9 119    

 
 
 

Table 5. Post Hoc tests (multiple comparisons) using Scheffe’s
 
method. 

 

(I) Heuristics (J) Heuristics 
Mean difference 

(I-J) 

Penalty 

Std. Error Sig. 
95% Confidence Interval 

Lower bound Upper bound 

GA 

GAH 360.83900* 33.93637 0.000 245.9076 475.7704 

PSO 144.60000* 33.93637 0.004 29.6686 259.5314 

PSOH 253.16900* 33.93637 0.000 138.2376 368.1004 

SA 330.95900* 33.93637 0.000 216.0276 445.8904 

SAH 377.41200* 33.93637 0.000 262.4806 492.3434 

GAH 

GA -360.83900* 33.93637 0.000 -475.7704 -245.9076 

PSO -216.23900* 33.93637 0.000 -331.1704 -101.3076 

PSOH -107.67000 33.93637 0.082 -222.6014 7.2614 

SA -29.88000 33.93637 0.978 -144.8114 85.0514 

SAH 16.57300 33.93637 0.999 -98.3584 131.5044 

PSO 

GA -144.60000* 33.93637 0.004 -259.5314 -29.6686 

GAH 216.23900* 33.93637 0.000 101.3076 331.1704 

PSOH 108.56900 33.93637 0.077 -6.3624 223.5004 

SA 186.35900* 33.93637 0.000 71.4276 301.2904 

SAH 232.81200* 33.93637 0.000 117.8806 347.7434 

PSOH 

GA -253.16900* 33.93637 0.000 -368.1004 -138.2376 

GAH 107.67000 33.93637 0.082 -7.2614 222.6014 

PSO -108.56900 33.93637 0.077 -223.5004 6.3624 

SA 77.79000 33.93637 0.392 -37.1414 192.7214 

SAH 124.24300* 33.93637 0.025 9.3116 239.1744 

SA 

GA -330.95900* 33.93637 0.000 -445.8904 -216.0276 

GAH 29.88000 33.93637 0.978 -85.0514 144.8114 

PSO -186.35900* 33.93637 0.000 -301.2904 -71.4276 

PSOH -77.79000 33.93637 0.392 -192.7214 37.1414 

SAH 46.45300 33.93637 0.865 -68.4784 161.3844 
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Table 5. Contd. 
 

SAH 

GA -377.41200* 33.93637 0.000 -492.3434 -262.4806 

GAH -16.57300 33.93637 0.999 -131.5044 98.3584 

PSO -232.81200* 33.93637 0.000 -347.7434 -117.8806 

PSOH -124.24300* 33.93637 0.025 -239.1744 -9.3116 

SA -46.45300 33.93637 0.865 -161.3844 68.4784 
 

* The mean difference is significant at the 0.05 level. 
 
 
 
uniform and unrelated machines. 
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