

Vol. 5(7), pp. 207-216, September 2013

10.5897/ JETR-2013-0295

ISSN 2006-9790 © 2013 Academic Journals

http://www.academicjournals.org/JETR

Journal of Engineering and Technology
Research

Full Length Research Paper

A comparative study of meta-heuristics for identical
parallel machines

M.O. Adamu1* and A. Adewunmi2

1
Department of Mathematics, University of Lagos, Lagos, Nigeria.

2
School of Computer Science, University of Kwazulu-Natal, Durban, South Africa.

Accepted 15 February, 2013

This paper considers the scheduling problem of minimizing the weighted number of early and tardy
jobs on identical parallel machines, Pm||∑wj(Uj + Vj). This problem is known to be NP complete and
finding an optimal solution is unlikely. Six meta-heuristics including hybrids are proposed for solving
the problem. The meta-heuristics considered are genetic algorithm, particle swarm optimization and
simulated annealing with their hybrids. A comparative study that involves computational experiments
and statistical analysis are presented evaluating these algorithms. The results of the research are very
promising.

Key words: Parallel machine, heuristics, just-in-time, meta-heuristics, NP-complete.

INTRODUCTION

Scheduling Just-In-Time (JIT) jobs is of great importance
in both manufacturing and service industries. Production
wastages are reduced and profitability is improved when
JIT is applied. Its application cuts across medical,
machine environment, distribution network and other
environments. In this paper, we consider the comparative
study of various heuristics for scheduling weighted jobs
on identical parallel machines. The objective is to
minimize the weighted number of early and tardy jobs on
identical parallel machines.

During the past few decades, a considerable amount of
work has been done on scheduling on multiple machines
to minimize the number of tardy jobs (Adamu and
Adewunmi, 2012b) and on single machine (Adamu and
Adewunmi, 2012c). Garey and Johnson (1979) have
shown our problem to be NP-complete and finding an
optimal solution appears unlikely. Using the three-field
notation of Graham et al. (1979), the problem is
represented as Pm||∑wj(Uj + Vj). Scheduling to minimize
the (weighted) number of tardy jobs have been
considered by Ho and Chang (1995), Süer et al. (1993),
Süer (1997), Süer et al. (1997), Van der Akker (1999),

Chen and Powell (1999), Liu and Wu (2003), and
M’Hallah and Bulfin (2005). Sevaux and Thomin (2001)
addressed the NP-hard problem to minimize the weighted
number of late jobs with release time (P|rj|∑wjUj). They
presented several approaches for the problem including
two MILP formulations for exact resolution and various
heuristics and meta-heuristics to solve large size
instances. They compared their results to that of Baptiste
et al. (2000) which performed averagely better. Baptiste
et al. (2000) used a constraint based method to explore
the solution space and give good results on small
problems (n < 50). Dauzère-Pérès and Sevaux (1999)
determined conditions that must be satisfied by at least
one optimal sequence for the problem of minimizing the
weighted number of late jobs on a single machine.
Sevaux and Sörensen (2005) proposed a variable
neighbourhood search (VNS) algorithm in which a tabu
search algorithm is embedded as a local search operator.
The approach was compared to an exact method by
Baptiste et al. (2000). Li (1995) addressed the
P|agreeable due dates |∑Uj problem. Where the due
dates and release times are assumed to be agreeable. A

*Corresponding author. E-mail: madamu@unilag.edu.ng.

208 J. Eng. Technol. Res.

heuristic algorithm is presented and a dynamic
programming lower bounding procedure developed.
Hiraishi et al. (2003) addressed the non preemptive
scheduling of n jobs that are completed exactly at their
due dates. They showed this problem is polynomially
solvable even if positive set-up is allowed. Sung and
Vlach (2001) showed that when the number of machines
is fixed, the weighted problem considered by Hirashi et
al. (2003) is solvable in polynomial time (exponential in
the number of machines) no matter whether the parallel
machines are identical, uniform or unrelated. However,
when the number of machines is part of the input, the
unrelated parallel machine case of the problem becomes
strongly NP-hard. Lann and Mosheiov (2003) provided a
simple greedy O(n log n) algorithm to solve the problem
of Hiraishi et al. (2003) greatly improving in the time
complexity. Čepek and Sung (2005) considered the same
problem of Hiraishi et al. (2003) where they corrected the
greedy algorithm of Lann and Mosheiov (2003) that was
wrong and presented a new quadratic time algorithm
which solved the problem. Adamu and Abass (2010)
proposed four greedy heuristics for the Pm||∑wj (Uj + Vj)
problem and extensive computational experiments
performed. Janiak et al. (2009) studied the problem of
scheduling n jobs on m identical parallel machines, in
which for each job a distinct due window is given and the
processing time is unit time to minimize the weighted
number of early and tardy jobs. They gave an O(n

5
)

complexity for solving the problem (Pm|pj = 1 |∑wj(Uj +
Vj). They also consider a special case with agreeable
earliness and tardiness weights where they gave on
O(n

3
) complexity (Pm|pj = 1, rj, agreeable ET

weights|∑wj(Uj + Vj)). Adamu and Adewunmi (2012a)
compared the heuristics of Adamu and Abass (2010) with
some metaheuristics.

PROBLEM FORMULATION

A set of independent jobs N = {1,2, . . . , n} has to be
processed on m parallel identical machines, which are
simultaneously available from time zero, each having an
interval rather than a point in time, called due window of
the job. The left end and the right end of the window are
respectively called the earliest due date (that is, the
instant at which a job becomes available for delivery),
and the latest due date (that is, the instant by which
processing or delivery of a job must be completed). There
is no penalty when a job is completed within the due
window, but for earliness or tardiness, penalty is incurred
when a job is completed before the earliest due date or
after the latest due date. Each job jє N has a processing
time pj, earliest due date aj, latest due date dj and a
weight wj. it is assumed that there is no preemptions and
only one job is allowed to be processed on a given
machine at any given time. For any schedule S, let tij and
Cij(S) = tij +pj represent the actual start time on a given
machine and completion time of job j on machine i,

respectively. Job j is said to be early if Cij(S) < aj, tardy if
Cij(S) > dj and on-time if aj ≤ Cij(S) ≤ dj. For any job j, the
weighted number of early and tardy jobs (Liu and Wu,
2003)










2

1
])([

2

1
int jijjjj pSCsignwUw

Where we define that

])([jij pSCsign  =











jijijj

jijijj

dSCORSCa

dSCORSCaif

)()(,1

)()(,1

and that int is the operation of making an integer.
Obviously,












jijijj

jijijj

j
dSCORSCa

dSCORSCaif
U

)()(,0

)()(,1

Therefore, the scheduling problem of minimizing the
weighted number of tardy jobs on identical parallel
machines can be formulated as G.









 
 2

1
])([

2

1
int

1111

jij

n

j

j

m

i

j

n

j

j

m

i

pSCsignwUwG (1)

Min G = 


j

n

j

j

m

i

Uw
11 









 2

1
])([

2

1
intmin

11

jij

n

j

j

m

i

pSCsignw

 (2)

HEURISTIC AND META-HEURISTICS

Greedy heuristic

Adamu and Abass (2010) have proposed four greedy heuristics
which attempt to provide near optimal solutions to the parallel

machine scheduling problem. In this paper the fourth heuristic
(DO2) would be use. It entails sorting the jobs according to their
latest due date (that is, latest due time - processing time) and ties
broken by the highest weighted processing time is used (that is,
weight / processing time).

Results of these greedy heuristics are encouraging; however it
will be further investigated whether using meta-heuristics and their
hybrids can achieve better results.

Genetic algorithm

Genetic algorithms (GAs) are one of the best known meta-heuristics
for solving optimization problems. GAs are loosely based on
evolution in nature and use strategies such as survival of the fittest,
genetic crossover and mutation. Since GAs usually have a high

performance and also use a population based technique, it was
decided to investigate their comparative performance with the
greedy heuristics.

Problem representation

Deciding on a suitable representation is one of the most important
aspects of a GA. It was decided that each job would be fixed to a

gene in the chromosome – implying that the chromosome has
length n (where n is the number of jobs). Each gene would also
have a machine number (the number of the machine to which the
job will be assigned) and an order (a value between 1 and n
representing the order in which jobs assigned to the same machine
will be executed). Genetic operators would then need to be applied
to both the machine number and the order.

Algorithm

A basic pseudo code of the genetic algorithm found in Adamu and
Adewunmi (2012a) was used.

Fitness function

The fitness function calculates the sum of the weights of jobs which
could not be assigned onto any of the machines so that they would
finish within the earliest due and latest due dates. For each
machine, jobs which are assigned to it are placed in a priority
queue (which bases priority on their respective order). Each job is
then removed from the queue and placed on the machine. If the job
was to finish early, then it would be scheduled to begin later (at
earliest due date -processing time) in order to avoid the earliness
penalty. However, if the job was to finish past the end time, then it
would not be scheduled at all and instead would have its weight
added to the total penalty (fitness). One final, important aspect to
note is that a lower fitness function implies a better performance.

Genetic operators

Genetic algorithms have a large number of operators available to
them as well as different implementations of the operators which
may be useful in different situations. In the initial version of the GA,
the following operators were used: 1-point crossover for machines,
conventional mutation for machines (that is, choose a random

machine between 0 and m-1 inclusive), swap mutation for the
execution order (since naturally this is permutation based) and
tournament selection. However, since there are no guarantees that
these operators allowed for the best performance, further
experimentation with variations of these operators was performed.
More details will be given subsequently.

Particle swarm optimization (PSO)

Particle swarm optimization was chosen to attempt to solve the
parallel machine scheduling problem. It is a population based
technique derived from the flocking behaviour of birds which relies
on both the particle’s best position found so far as well as the entire
population’s best position to get out of local optimums and to find

the global optimum. PSO is appropriate to use for parallel machine
scheduling because not much is known about the solution
landscape and so PSO may be useful to get out local optimums to
find the global optimum.

Problem representation

The PSO algorithm requires that a representation of the solution (or
encoding of the solution) is chosen. Each particle will be instances
of the chosen representation. A complication is that PSO works in

Adamu and Adewunmi 209

the continuous space whereas the scheduling problem is a discrete
problem. Thus, a method is needed to convert from the continuous
space to the discrete space. The representation is as follows:

(i) Each particle contains a number between 0 (inclusive) and the
number of machines (exclusive). This number represents the
machine on which the particle is scheduled and is simply truncated
to convert to the discrete space.
(ii) Each particle contains a number between 0 (inclusive) and 1
(exclusive). This number represents the order of scheduling relative
to the other particles on the same machine where a lower number

indicates that that job will be scheduled before the jobs with higher
numbers.

Algorithm

A basic pseudo code of the PSO found in Adamu and Adewunmi
(2012a) was used.

Fitness function

Finally, a method is needed to convert the encoding into a valid
schedule (this is performed when calculating the fitness).

This is performed by separating the jobs into groups based on
the machine to which they are assigned. Within a group, the jobs

are sorted by their order parameter and organized into a queue.
The schedule for a particular machine is then formed by removing
jobs from the queue and scheduling them as early as possible
without breaking the earliness constraint. The weights of jobs that
cannot be scheduled are totaled as the fitness of the solution
(which would ideally be as small as possible).

Simulated annealing

Simulated annealing (SA) was chosen as a meta-heuristic which
could solve the parallel machine scheduling problem. Simulated
annealing is based on real-life annealing, where the heating of
metals allows for atoms to move from their initial position and the
cooling allows for the atoms to settle in new optimal positions. SA is

not a population based heuristic – thus only one solution is kept at
any one stage. Since SA should result in less operations being
performed with respect to a population based technique, execution
times may be quicker. It is this reason why SA was chosen for
investigation.

It should also be noted that simulated annealing will in all
likelihood achieve better results than a simple hill-climbing
technique. This is because SA can take downward steps (that is,
accept worse solutions) in order to obtain greater exploration. Thus,
it is less likely to become stuck in a local minimum (a very real
problem given the complex solution space).

Problem representation

The representation is remarkably similar to that used in the GA. A

solution consists of n elements (where n is the number of jobs).
Each element has a specific job as well as the machine onto which
it will be assigned and the order of assignment. Perhaps the major
difference between them is that the GA has a population of
solutions (chromosomes) whereas SA focuses on a single solution.

Algorithm

A basic algorithm used in the SA [found in Adamu and Adewunmi
(2012a)] technique:

210 J. Eng. Technol. Res.

Fitness function

Since, the solution is represented in virtually the exact same
manner as a chromosome in the GA and a particle in PSO, the

fitness function is calculated in the same manner. That is, jobs
pertaining to a particular machine are placed in a priority queue
before being assigned onto the machine. Those which cannot be
assigned contribute towards the penalty.

Operators

Although, simulated annealing does not really have operators (in
the sense of a GA having genetic operators), the SA algorithm does
has to select a neighbor. The particular neighbor selection strategy
that is used updates only a single element of the solution. The
element is given a new randomly chosen machine and a new order
(done by swapping with the order of another randomly chosen
element). By allowing for a high level of randomness when
selecting the neighbor, it will be ensured that good exploration will
be achieved and that a local best is not found too early.

COMPUTATIONAL ANALYSIS AND RESULTS

Date generation

The program was written in Java using Eclipse. It actually
consists of a number of programs, each one
implementing a different type of solution. The output of
each of these programs gives the final fitness after the
algorithm has been performed and the time in
milliseconds that the algorithm took to run.

The heuristics were tested on problems generated with
100, 200, 300 and 400 jobs similar to Adamu and Abass
(2010), Ho and Chang (1995), Baptiste et al. (2000), and
M’Hallah and Bulfin (2005). The number of machines was
set at levels of 2, 5, 10, 15 and 20. For each job j, an
integer processing time pj was randomly generated in the
interval (1, 99). Two parameters, k1 and k2 (levels of
Traffic Congestion Ratio) were taken from the set {1, 5,
10, 20}. For the data to depend on the number of jobs n,
the integer earliest due date (aj) was randomly generated
in the interval (0, n / (m * k1)), and the integer latest due
date (dj) was randomly generated in the interval (aj + pj, aj
+ pj + (2 * n * p) / (m * k2)).

For each combination of n, k1 and k2, 10 instances
were generated, that is, for each value of n, 160
instances were generated with a weight randomly chosen
in interval (1, 10) for 8000 problems of 50 replications.
The meta-heuristics were implemented on a Pentium
Dual 1.86 GHz, 782 MHz, and 1.99 GB of Ram. The
following meta-heuristics were analyzed GA, PSO, SA,
GA Hybrid, PSO Hybrid, PSOGA Hybrid and SA Hybrid.

Improvements

Genetic algorithms are different from many other meta-
heuristics in that they have different genetic operators
which can be tried and tested – rather than simply
changing parameters. The original GA which was tested

used 1-point crossover, random mutation for machines,
swap mutation for order and tournament selection. It was
decided to try other combinations of operators in order to
see if performance could be increased. For this reason,
roulette-wheel selection, uniform crossover and insert
mutation (for order) were all programmed. A user would
then be able to choose any combination of operators to
use for their own GA. More information on the optimal
combination of genetic operators will be mentioned
subsequently in the parameters.

Greedy hybrids

Once the meta-heuristics (GA, PSO and SA) had been
programmed, it was thought that improvements on them
could potentially be made if they somehow included
aspects or features from the greedy heuristic used by
Adamu and Abass (2010). It was clear from the works of
Adamu and Abass (2010) that the key to the greedy
heuristics was in the order in which jobs were assigned to
machines. So the mechanisms of ordering in DO2
needed to be incorporated in the meta-heuristics (GA,
PSO, SA).

To implement the hybridization in the 3 meta-heuristics,
the order field was removed from Gene, Dimension and
Element respectively. Also, any code in Chromosome,
Particle and Solution which dealt with the order (for
example, swap mutation in Chromosome) was removed.

Parameters

For each solutions strategy, there are a number of
different parameters that affect the performance of the
algorithm such as population size, mutation rate, initial
temperature, etc. These parameters needed to be
experimentally determined and so the algorithms were
run manually on a subset of all the testing data in order to
determine the optimal parameters. This involved
experimenting with the full range of each parameter and
recording and tabulating the results achieved. The
combination of parameters that gave the best
performance was selected as the optimal parameters.

The optimal parameters for the genetic algorithm are:

(i) A population size of 10.
(ii) Random mutation (for machines) used at a rate of
0.01.
(iii) Swap mutation (for order) used at a rate of 0.01.
(iv) Uniform crossover at a rate of 0.5.
(v) Tournament selection with a k set at 40% of the
population size.
(vi) The number of iterations of the algorithm was set at
2000.

Further to the above parameters, the genetic algorithm
hybrid achieved best results when hybridized with the
DO2 greedy heuristic.

The optimal parameters for particle swarm optimization
are:

(i) A population size of 50.
(ii) A w (momentum value) of 0.3.
(iii) A c1 of 2.
(iv) A c2 of 2.
(v) The number of iterations of the algorithm was set at
2000.

Further to the above parameters, the particle swarm
optimization hybrid achieved best results when hybridized
with the DO2 greedy heuristic.

The optimal parameters for simulated annealing are:

(I) An initial temperature of 25.
(ii) A final temperature of 0.01.
(iii) A geometrical decreasing factor (beta) of 0.999.

Further to the above parameters, the simulated annealing
hybrid achieved best results when hybridized with the
DO2 greedy heuristic.

DISCUSSION

In this part of the work, the results of the algorithms are
shown, including the hybridizations. In the four columns
shown in Table 1, each cell consists of two numbers. The
top number is the weight of the schedule that is
produced, averaged over 50 runs. The bottom number is
the average time in milliseconds that the algorithm takes
to complete.

Also included are four charts each for the performance
of the meta-heuristics in relation to the penalty (Figure 1)
and time (Figure 2) for N= 100, 200, 300 and 400. Figure
1 compares the relative performance (penalty) of each of
the 6 algorithms compared to the number of machines
used. Again, four charts are given to show the
computational times of the meta-heuristics for various
values of N. It should be clear from both the Table 1 and
the charts that the Simulated Annealing Hybrid (SAH) out
performed the other meta-heuristics in almost all points
and the over all lowest time averagely less than a
second. It was observed the various hybrids performed
better than their meta-heuristic without it. It further proves
the effectiveness of hybridization on the meta-heuristics.

The Genetic algorithm (GA) performed worst compared
to other meta-heuristics in all of the categories
considered for all N jobs and M machines. The GA time is
averagely 2.8 s, far slower than the SAH – notably
because it keeps track of a population of individual
solutions. Results show it to be in the region of 2.8 times
slower compared to SAH.

The genetic algorithm which is hybridized with DO2
(GAH) achieves better results (Table 1 and Figure 1)
compared to the simple genetic algorithm (GA) on all of
the test cases. In all cases considered, the GAH
outperform the ordinary GA and as the value of N

Adamu and Adewunmi 211

increases the performance rate of GAH over GA widens.
For larger values of N the performance of GAH is almost
equivalent if not better than SAH. GAH takes on average
about 2.77 s. GAH would be ideal for larger values of N
where an optimal solution is not readily feasible.

The particle swarm optimization (PSO) and the hybrid
PSO (PSOH) produce lower weight compared to the GA.
Furthermore, they are far slower than all the meta-
heuristics considered (over 14.4 times slower for PSO
and 10.5 for PSOH in relation to SAH). This is
understandable since PSO is a population-based
algorithm so there is a lot of work being done at each
step. Hybridizing particle swarm optimization with the
DO2 greedy heuristic produces results which are better
than PSO for all cases. The PSOH is also about 1.37
times faster than PSO.

The results for simulated annealing (SA) are far better
on the average than those GA, PSO and PSOH both in
performance of penalty and time (Tables 1 and 2 and
Figures 1 and 2). On average, SA takes 1 s to run.
However, it is about 2.8, 2.77, 14.4 and 10.5 times
quicker than the GA, GAH, PSO and PSOH respectively
(Table 5).

Hybridizing simulated annealing with the DO2 greedy
heuristic (SAH) produces results that are slightly better
than the SA solution for all cases considered. It produces
the overall best results among the meta-heuristics in
terms of performance in relation to penalty and time. The
average timing is a little less than a second.

Further statistical analysis are carried out for both the
penalty and timing of the various algorithms. Test of
homogeneity of variances, ANOVA test, multiple
comparisons test and homogeneous subsets are
considered. Tables 2 to 4 are for the penalty performance
and time performance. For the penalty performance, it is
discovered that the variances of the penalties are not
significantly different. Table 2 presents the ANOVA table
for penalties. The means of the meta-heuristics are
significantly different from one another, that is, they do
not have equal means. Due to equality of their variances,
subsets of homogeneous groups are displayed in Table 3
using Scheffe’s method. Four groups are obtained: group
1—SAH, GAH and SA, group 2—GAH, SA and PSOH,
group 3 – PSOH and PSO, and group 4 – GA. These
groups are arranged in decreasing order of their
effectiveness. The worst among them is the GA.
Similarly, for the time performance, Table 4 shows the
ANOVA table for the test of equality of the mean time of
the meta-heuristics which are also significantly different.

This implies that timings for the various algorithms are
not the same. PSO and PSOH have the highest time of
14. 4 and 10.5 s respectively. While the lowest of about 1
s for both SA and SAH.

Conclusion

This paper presents results on scheduling on identical

212 J. Eng. Technol. Res.

Table 1. Performance of Meta-heuristics for different N.

M=2 M=5 M=10 M=15 M=20

MIN AVE MAX MIN AVE MAX MIN AVE MAX MIN AVE MAX MIN AVE MAX

N=100

GA
593 655.72 730 525 610.68 700 510 558.06 628 458 522.42 557 444 519.22 603

1906 3404.18 5844 4265 4962.46 5921 4218 4897.44 5937 4235 4942.52 5938 4328 5091.82 6218

GAH
313 374.78 444 257 340.22 397 244 304.78 385 197 261.2 323 202 268.76 309

2750 2947.88 3266 2640 2826.58 3125 2485 2667.54 2953 2484 2674.44 3078 2843 3048.78 3360

PSO
385 459.9 559 339 482.84 583 352 470.16 559 419 455.74 512 425 477.48 549

13516 14506.84 29969 13188 14182.52 25578 13047 14038.78 27688 13218 14291.92 26968 13516 14554.38 28578

PSOH
309 374.76 474 289 432.4 511 308 450.56 550 304 438.08 484 342 413.22 472

10125 10785.3 11531 9750 10357.54 11172 9390 10139.38 13453 9578 10346.24 19688 10735 11605.54 20531

SA
330 378.38 441 294 348.6 417 242 297.02 366 188 247.92 292 216 262.94 317

421 470.08 547 406 884.64 1375 875 1083.78 1359 907 1092.8 1344 937 1127.8 1531

SAH
342 397.94 473 246 315.14 380 200 258.44 329 167 211.82 274 173 231.52 282

532 584.36 657 500 529.52 578 453 487.22 563 453 495.32 562 531 574.1 656

 N=200

GA
535 605.24 717 475 544.34 635 418 482.1 538 387 439.78 535 357 408.18 465

3297 5051 6188 1843 1982.46 2265 1812 1967.26 2328 1812 1963.82 2156 1859 2011.86 2329

GAH
124 180.22 247 99 163.72 240 92 146.74 220 75 129.24 171 69 107.22 161

2734 2956.4 3313 2625 2796.28 3078 2453 2650.34 2953 2468 2629.22 2875 2484 2673.74 3015

PSO
285 345.68 410 312 358.06 448 188 361.34 438 225 354.64 420 300 354.52 409

13406 14314.02 19063 13172 13979.1 15266 13078 13795.56 14829 13172 13949.72 14921 13484 14203.38 15062

PSOH
127 181.36 225 190 257.36 318 184 301.18 344 197 302.32 360 265 303.38 341

10187 10841.88 16500 9672 10437.5 19250 9422 10144.36 17766 9484 10185.36 18485 9562 10376.2 17328

SA
157 231.2 289 162 206.5 272 93 170.5 230 103 139.48 189 78 108.22 155

984 1174.36 1438 922 1116.52 1469 875 1074.72 1328 891 1103.5 1390 937 1121.2 1422

SAH
138 190.74 277 93 144.18 210 58 116.5 173 60 91.4 140 35 66.74 115

547 1232.94 1672 1093 1331.58 1656 453 510.6 1282 431 488.72 578 453 880.02 1375

 N=300

GA
475 591.46 665 463 520.6 583 386 449.34 540 319 400.3 469 323 371.86 451

1906 2064.98 2359 1859 1987.52 2438 1813 1961.62 2531 1812 1993.14 2281 1875 2036.58 2922

GAH
33 85.06 146 23 68.24 120 27 61.5 139 25 50.16 95 16 42.72 78

2750 2964.08 3437 2594 2837.8 4672 2469 2649.78 3735 2453 2657.44 4594 2453 2653.4 3359

PSO
228 304.32 392 210 298.02 383 162 306.24 379 234 306.7 377 165 309.72 384

13422 14430.36 25984 13234 14209.66 27000 13109 14092.14 28438 13281 14214.64 26313 13453 14439.7 25375

Adamu and Adewunmi 213

Table 1. Contd.

PSOH
36 84.14 165 100 154.42 211 70 196.2 268 144 209.3 267 167 215.44 264

10000 10703.48 11547 9656 10202.08 10984 9344 9937.72 10734 9375 9990.48 10766 9516 10167.48 11062

SA
96 164.22 237 92 130.72 195 53 102.34 169 50 79.16 136 33 61.74 87

984 1185.98 1453 922 1115.34 1375 875 1079.92 1438 906 1079.66 1406 937 1142.32 1407

SAH
23 88.68 171 24 61.22 112 13 43.28 108 12 30.54 65 5 21.24 42

1219 1445.26 1672 1078 1329.92 1656 1016 1216.54 1547 1000 1200.98 1563 1031 1216.58 1484

 N=400

GA
483 573.08 668 413 496.28 589 316 424.66 485 308 368.82 483 290 340.28 410

1906 2056.46 2625 1843 2002.46 3218 1813 1980.1 3125 1828 1994.6 2718 1875 2035.32 2610

GAH
0 28.42 67 0 17.86 45 1 16.04 81 0 9.76 29 0 9 29

2719 2939.6 3718 2609 2802.28 3453 2422 2609.76 2750 2485 2643.16 4157 2454 2684.06 4500

PSO
204 285.2 362 183 257.7 349 119 262.04 356 187 265.8 330 228 274.32 319

13406 14165.64 15157 13172 15126.54 27078 13015 14900 36375 13203 15070.32 36969 13468 15490.76 32828

PSOH
2 25.84 56 27 80.52 122 6 116.62 189 32 135.3 195 33 146.64 199

9937 10654.98 11625 9594 10375.08 18703 9344 11234.38 27438 9266 11292.5 28157 9453 10294.68 18750

SA
82 124.62 184 29 82.3 157 22 58.46 98 12 39.42 64 6 29.5 59

985 1109 1453 921 1112.82 1547 875 1064.52 1282 907 1106.44 1484 937 1149.38 1500

SAH
1 29.48 84 2 16.44 48 0 11.36 53 0 4.9 19 0 2.62 15

1219 1459.4 1781 1093 1320.86 1735 1015 1192.86 1453 1016 1188.22 1609 1015 1220.66 1625

Table 2. ANOVA.

Penalty Sum of squares df Mean square F Sig.

Between groups 2170218.657 5 434043.731 37.688 0.000

Within groups 1312911.671 114 11516.769

Total 3483130.328 119

parallel machines with the objective of minimizing
the weighted number of early and tardy jobs. Six
meta-heuristics including hybridization are
proposed for solving the problem. Extensive

computational experiments are performed to
analyze these meta-heuristics. It was observed
that the simulated annealing hybrid gives the best
result both in performance and timing while the

genetic algorithm was the worst among them in
performance. Further research will focus on
comparing these results with optimal solutions
and considering other machine environment like

214 J. Eng. Technol. Res.

Figure 1. Meta-heuristics performance in relation to penalty.

Figure 2. Performance Time of the Meta-heuristics.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

GA GAH PSO PSOH SA SAH

Chart for N = 400

M=2 AVE

M=5 AVE

M=10 AVE

M=15 AVE

M=20 AVE

0

2000

4000

6000

8000

10000

12000

14000

16000

GA GAH PSO PSOH SA SAH

Chart for N = 300

M=2

M=5

M=10

M=15

M=20

Figure 2. Performance time of the meta-heuristics.

Adamu and Adewunmi 215

Table 3. Homogeneous subsets using Scheffe’s

method (Harmonic mean sample size = 20.000).

Heuristics

Penalty

N
Subset for alpha = 0.05

1 2 3 4

SAH 20 116.7090

GAH 20 133.2820 133.2820

SA 20 163.1620 163.1620

PSOH 20 240.9520 240.9520

PSO 20 349.5210

GA 20 494.1210

Sig. 0.865 0.082 0.077 1.000

Means for groups in homogeneous subsets are displayed.

Table 4. ANOVA.

Time Sum of Squares df Mean square F Sig.

Between Groups 3.175E9 5 6.350E8 1634.682 0.000

Within Groups 4.429E7 114 388468.477

Total 3.219E9 119

Table 5. Post Hoc tests (multiple comparisons) using Scheffe’s

method.

(I) Heuristics (J) Heuristics
Mean difference

(I-J)

Penalty

Std. Error Sig.
95% Confidence Interval

Lower bound Upper bound

GA

GAH 360.83900* 33.93637 0.000 245.9076 475.7704

PSO 144.60000* 33.93637 0.004 29.6686 259.5314

PSOH 253.16900* 33.93637 0.000 138.2376 368.1004

SA 330.95900* 33.93637 0.000 216.0276 445.8904

SAH 377.41200* 33.93637 0.000 262.4806 492.3434

GAH

GA -360.83900* 33.93637 0.000 -475.7704 -245.9076

PSO -216.23900* 33.93637 0.000 -331.1704 -101.3076

PSOH -107.67000 33.93637 0.082 -222.6014 7.2614

SA -29.88000 33.93637 0.978 -144.8114 85.0514

SAH 16.57300 33.93637 0.999 -98.3584 131.5044

PSO

GA -144.60000* 33.93637 0.004 -259.5314 -29.6686

GAH 216.23900* 33.93637 0.000 101.3076 331.1704

PSOH 108.56900 33.93637 0.077 -6.3624 223.5004

SA 186.35900* 33.93637 0.000 71.4276 301.2904

SAH 232.81200* 33.93637 0.000 117.8806 347.7434

PSOH

GA -253.16900* 33.93637 0.000 -368.1004 -138.2376

GAH 107.67000 33.93637 0.082 -7.2614 222.6014

PSO -108.56900 33.93637 0.077 -223.5004 6.3624

SA 77.79000 33.93637 0.392 -37.1414 192.7214

SAH 124.24300* 33.93637 0.025 9.3116 239.1744

SA

GA -330.95900* 33.93637 0.000 -445.8904 -216.0276

GAH 29.88000 33.93637 0.978 -85.0514 144.8114

PSO -186.35900* 33.93637 0.000 -301.2904 -71.4276

PSOH -77.79000 33.93637 0.392 -192.7214 37.1414

SAH 46.45300 33.93637 0.865 -68.4784 161.3844

216 J. Eng. Technol. Res.

Table 5. Contd.

SAH

GA -377.41200* 33.93637 0.000 -492.3434 -262.4806

GAH -16.57300 33.93637 0.999 -131.5044 98.3584

PSO -232.81200* 33.93637 0.000 -347.7434 -117.8806

PSOH -124.24300* 33.93637 0.025 -239.1744 -9.3116

SA -46.45300 33.93637 0.865 -161.3844 68.4784

* The mean difference is significant at the 0.05 level.

uniform and unrelated machines.

REFERENCES

Adamu M, Abass O (2010). Parallel machine scheduling to maximize
the weighted number of just-in-time jobs. J. Appl. Sci. Technol.
15(1&2):27–34.

Adamu M, Adewunmi A (2012a). Metaheuristics for Scheduling on
Parallel Machines to minimize the Weighted Number of Early and
Tardy Jobs. Int. J. Phys. Sci. 7(10):1641-1652.

Adamu M, Adewunmi A (2012c). Single Machine Review to Minimize
Weighted Number of Tardy Jobs. J. Ind. Manag. Optim. Submitted for
publication.

Adamu MO, Adewunmi A (2012b). Minimizing the Weighted Number of
Tardy Jobs on Multiple Machines: A Review. Asian J. Oper. Res.

Baptiste P, Jouglet A, Pape CL, Nuijten W (2000). A Constraint Based

Approach to Minimize the Weighted Number of Late Jobs on Parallel
Machines. Technical Report 2000/228, UMR, CNRS 6599,
Heudiasyc, France.

Čepek O, Sung SC (2005). A Quadratic Time Algorithm to Maximize the
Number of Just-In-Time Jobs on Identical Parallel Machines. Comput.
Oper. Res. 32:3265-3271.

Chen Z, Powel WB (1999). Solving Parallel Machine Scheduling
Problems by Column Generation. INFORMS J. Comput. 11(1):78-94.

Dauzère-Pérès S, Sevaux M (1999). Using Lagrangean Relation to

Minimize the (Weighted) Number of Late Jobs on a Single Machine.
National Contribution IFORS 1999, Beijing, P.R. of China (Technical
Report 99/8 Ecole des Minesdes Nantes, France).

Garey MR, Johnson DS (1979). Computers and Intractability, A Guide
to the Theory of NP Completeness. Freeman, San Francisco.

Graham RL, Lawler EL, Lenstra TK, Rinnooy Kan AHG (1979).

Optimization and Approximation in Deterministic Sequencing and
Scheduling: A Survey. Ann. Discrete Math. 5:287-326.

Hiraishi K, Levner E, Vlach M (2002). Scheduling of Parallel Identical

Machines to Maximize the Weighted Number of Just-In-Time Jobs.
Comput. Oper. Res. 29:841-848.

Ho JC, Chang YL (1995). Minimizing the Number of Tardy Jobs for m

Parallel Machines. Eur. J. Oper. Res. 84:343-355.
Janiak A, Janiak WA, Januszkiewicz R (2009). Algorithms for Parallel

Processor Scheduling with Distinct Due Windows and Unit-Time

Jobs. Bull. Pol. Acad. Sci. Technol. Sci. 57(3):209-215.
Lann A, Mosheiov G (2003). A Note on the Maximum Number of On-

Time Jobs on Parallel Identical Machines. Comput. Oper. Res.

30:1745-1749.

Li CL (1995). A Heuristic for Parallel Machine Scheduling with
Agreeable Due Dates to Minimize the Number of Late Jobs. Comput.

Oper. Res. 22(3):277-283.
Liu M, Wu C (2003). Scheduling Algorithm based on Evolutionary

Computing in Identical Parallel Machine Production Line. Robot.

Comput. Integr. Manuf. 19:401-407.
M’Hallah R, Bulfin RL (2005). Minimizing the Weighted Number of Tardy

Jobs on Parallel Processors. Eur. J. Oper. Res. 160:471-484.
Sevaux M, Sörensen K (2005). VNS/TS for a Parallel Machine

Scheduling Problem. MEC-VNS: 18
th
 Mini Euro Conference pm VNS.

Sevaux M, Thomin P (2001). Heuristics and Metaheuristics for a parallel
Machine Scheduling Problem: A Computational Evaluation.

Proceedings of 4
th
 Metaheuristics Int. Conf. pp. 411-415.

Süer GA (1997). Minimizing the Number of Tardy Jobs in Multi-Period
Cell Loading Problems. Comput. Ind. Eng. 33(3&4):721-724.

Süer GA, Czajkiewicz Z, Baez E (1993). Minimizing the Number of
Tardy Jobs in Identical Machine Scheduling. Proceedings of the 15

th

Conference on Computers and Industrial Engineering, Cocoa Beach,

Florida.
Süer GA, Pico F, Santiago A (1997). Identical Machine Scheduling to

Minimize the Number of Tardy Jobs when Lost-Splitting is Allowed.

Comput. Ind. Eng. 33(1&2):271-280.
Sung SC, Vlach M (2001). Just-In-Time Scheduling on Parallel

Machines. The European Operational Research Conference,

Rotterdam, Netherlands.
Van Den Akker JM, Hoogeveen JA, Van De Velde SL (1999). Parallel

Machine Scheduling by Column Generation. Oper. Res. 47(6):862-

872.

