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Introduction

Nanotechnology advancement in medical sciences led to 

the design and synthesis of nanostructures for biomedical 

applications. Due to unique properties of NPs such as 

small size (1-100 nm in diameter) and the greater surface 

area to volume ratio as well as different electronic, 

magnetic, optical and mechanical properties and also 

particle shape, these particles hold great interests in the 

various fields.1-6  

It may seem that NPs do not have toxic effects. 

However, the greater surface area to volume ratio of 

these particles causes their higher chemical reactivity and 

results in increased production of reactive oxygen 

species (ROS). Indeed, the NPs surface area is a key 

factor in their intrinsic toxicity because of the interaction 

of their surfaces with biological system.7-10  

ROS formation is one of the mechanisms of NPs toxicity 

which could cause oxidative stress, inflammation and 

consequent damages to the proteins, cell membrane and 

DNA. Therefore, assessment of nanoparticles toxicity is 

necessary in biomedical applications including drug 

delivery systems, gene delivery and therapeutic 

applications.11-14 

Prooxidants are chemicals that induce oxidative stress 

through either creating reactive oxygen species or 

inhibiting antioxidants. NPs react with cells and induce 

their prooxidant effects via intracellular ROS generation 

involving mitochondrial respiration and activation of 

NADPH-dependent enzyme systems.15-17 

NPs can activate the cellular redox system specifically in 

the lungs where the immune cells including alveolar 

macrophages (AM) and neutrophils act as direct ROS 

inducers. Professional phagocytic cells of the immune 

system including neutrophils and AMs induce 

remarkable ROS upon internalization of NPs via the 

NADPH oxidase enzyme system.16,18 

In this review, we have focused on introducing in vitro 

toxicity assays for cytotoxicity assessment of 

nanoparticles. We have also reviewed toxic effect of 

several nanoparticles such as carbon nanotubes, titanium 

dioxide NPs, quantum dots, gold NPs and silver NPs. 

 

Cytotoxicity assays of nanoparticles 

Cytotoxicity assays are classified as in vivo and in vitro 

tests. In vivo toxicity assays (cell-based assay) are time-

consuming and expensive and involve ethical issues but 

in vitro toxicity tests (cell cultured-based assay) are 

faster, convenient, less expensive and devoid of any 

ethical issues. Due to these advantages, in vitro assays 

are the first choice for toxicity assessment of most 

nanomaterials.19  

In vitro methods include approaches for assessment of 

integrity of the cell membrane and the metabolic activity 
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of viable cells. Evaluation of cell membrane integrity is 

one of the most common approaches to measure cell 

viability. It is based on the leakage of substances such as 

lactate dehydrogenase (LDH) that normally reside inside 

cells to the external environment and the measurement of 

LDH activity in the extracellular media. Alternatively, 

membrane integrity can be determined by penetration of 

dyes such as trypan blue and neutral red into the 

damaged cells and staining intracellular components. 

These dyes cannot enter living cells. Metabolic activity 

of viable cells could be determined through colorimetric 

assays, such as the MTT and MTS assays.20-23 

Bioluminescent methods including methods using 

luciferase, which catalyzes the formation of light from 

adenosine triphosphate (ATP) are also commonly used as 

cell viability assays in which the number of surviving 

cells is determined by measuring the uptake and 

accumulation of neutral red dye and trypan blue after 

exposure to the toxicant.24-26 Among in vitro methods, 

LDH, MTT and MTS assay are most widely used for 

assessment of nanoparticles cytotoxicity (Table 1).27  

 

LDH test 

In general, LDH test is a colorimetric assay that 

quantitatively measures LDH, a marker of cell membrane 

integrity, released from damaged cells into the culture 

media. This assay is a fast, simple and reliable method for 

determining cellular toxicity.28 

 

MTT assay 

MTT assay is another candidate assay for measurement 

of cytotoxicity of NPs. 3-(4,5-Dimethylthiazol-2-yl)-2,5-

Diphenyltetrazolium Bromide, (MTT), is a yellow 

substance which reduces to purple insoluble formazan 

crystals by mitochondrial succinate dehydrogenases in 

viable cells. This method is directly related to the 

number of viable cells.29 

 

MTS assay 

In the MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-

carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-

tetrazolium) assay, viable cells will convert tetrazolium 

salt into a colored soluble formazan product by 

mitochondrial dehydrogenase enzymes. Indeed, in MTS 

assay, similar to MTT assay, a colorimetric product is 

formed. The formazan produced is directly proportional 

to the number of living cells in the culture.30 

 

Toxicity mechanisms of nanoparticles 

Physicochemical reactivity of NPs lead to the formation 

of free radicals or ROS including superoxide radical 

anions and hydroxyl radicals direct or indirect through 

activation of oxidative enzymatic pathways result in 

oxidative stress (Figure 1).31-36 In general, there are 

several sources for oxidative stress: 

 Oxidant-generating properties of particles themselves 

as well as their ability to stimulate generation of ROS 

as a part of cellular response to nanoparticles 

 Transition metal-based nanoparticles or transition 

metal contaminants used as catalysts during the 

production of non-metal nanoparticles. 

 Relatively stable free radical intermediates present on 

reactive surfaces of particles. 

 Redox active groups resulting from functionalization 

of nanoparticles 

The following briefly introduces cytotoxicity of some of 

nanoparticles such as carbon nanotubes, titanium dioxide 

NPs, quantum dots, gold NPs and silver NPs. 

 

 

Figure 1. ROS generation induced by NPs and their cytotoxicity 
mechanism. 

 

Cytotoxicity of carbon nanotubes 

Carbon nanotubes (CNTs), fiber shaped nanostructures, 

are allotropes of carbon which are categorized as single 

wall carbon nanotubes (SWCNT) and multi wall carbon 

nanotubes (MWCNT). In addition to industrial uses, 

carbon nanotubes, due to their unique electrical, physical 

and thermal qualities hold great interest in biomedical 

applications.37-39 

Numerous reports have shown that CNT could induce 

the ROS generation in 

multitudes of cell lines and activation of ROS-associated 

intracellular signaling pathways in a dose-dependent 

manner such as mitogen activated protein kinase 

(MAPK), activator protein-1 (AP-1) and nuclear factor 

kappa-light-chain-enhancer of activated B cells (NF-κB) 

in mesothelial cells.40-43 

It has been reported that MWCNT are able to stimulate 

the release of the cytokines, IL-1β, TNF-α, IL-6 and IL-8 

from mesothelial cells and macrophages. Murphy et al. 

demonstrated that direct exposure to MWCNT causes to 

length-dependent cytokine release from macrophages but 

not mesothelial cells. However, treatment of the 

mesothelial cells with conditioned medium from CNT-

treated macrophages led to increased secretion of 

cytokines. In another study, MWCNT were revealed to 

trigger the macrophages to produce TGF-β1 and platelet-

derived growth factor (PDGF) that promoted the 
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transformation of lung fibroblasts to myofibroblasts, a 

major factor in development of fibrosis.44 

 

Cytotoxicity of TiO2 nanoparticles 

Widespread applications of titanium dioxide 

nanoparticles (TiO2 NPs) in consumer products including 

cosmetic, paints, pharmaceutical preparations, food 

additives and so on is a result of their ability to confer 

opacity and whiteness.45,46 In recent years, the 

photocatalytic killing effect of TiO2 NPs on cancerous 

cells has received great attention.47-49 

The potential mechanism of cytotoxicity induced by 

these non-soluble metal oxide NPs are still controversial. 

In some literature, these NPs are even considered as a 

natural nanomaterial.50 Conversely, some reports have 

pointed out the potential toxicity of TiO2 nanoparticles, 

including their ability to induce oxidative stress, 

genotoxicity and immunotoxicity.51,52 However, the 

mechanisms of these toxic effects are still blurred but 

cytotoxicity evaluation of these metal oxide NPs is 

important for in vivo and in vitro studies. Despite other 

NPs such as ZnO, quantum dots and so, TiO2 NPs do not 

release toxic ions hence toxicity of these particles could 

be attributed to the size-dependent interaction between 

nanoparticles and intracellular biomolecules adsorbed 

onto nanoparticles.53-55 These interactions result in 

generation of ROS, mitochondrial depolarization, plasma 

membrane leakage, intracellular calcium influx and 

cytokine release.56-59 

In a study, Xiong et al. investigated size influence of 

TiO2 NPs on their phototoxicity. Results showed that 

there was a converse relationship between phototoxicity 

and the size of these particles; as, the mortality of the 

cells treated with 10 nm TiO2 NPs after photoactivation 

by UV light was significantly higher than that of the cells 

treated with larger particles (20 and 100 nm particles). 

Furthermore, cytotoxicity of non-photoacivated 10, 20 

and 100 nm NPs was not inconsiderable for cells treated 

with them. In addition, the treated cells with 10 nm 

photoactivated particles demonstrated a higher 

generation of mitochondrial superoxide in comparison to 

20 and 100 nm particles.  

Indeed, the higher cytotoxicity induced by smaller 

particles is related to their higher surface area and hence 

contain a larger number of surface-exposed TiO2 

molecules. Phototoxicity of these NPs could be 

decreased via surface coating with chitosan or PEMA 

because of the prevention of biomolecule adsorption and 

hydroxyl radicals (.OH) production in the 

photoactivation process.54 

In another study, size-dependent toxicity of both TiO2 

and PLGA was investigated. Findings revealed that 

biomedically used PLGA nanoparticles did not show 

strong cytotoxic effect in comparison to TiO2 

nanoparticles. However, the smaller PLGA nanoparticles 

have the potential to trigger the release of TNF-α. 200 

nm PLGA nanoparticles could not trigger any negative 

response from cells. Higher cytotoxic effect was 

observed in cells treated with TiO2 nanoparticles, 

especially at concentrations higher than 100μg/ml. The 

size-dependent cytotoxicity of both PLGA and TiO2 

nanoparticles could be attributed to the smaller size and 

larger specific surface area and thus exposure of more 

molecules on the surface that led to the adsorption of 

more biomolecules such as proteins in the environment.60 

 

Cytotoxicity of quantum dots 

Quantum dots (QDs), colloidal semiconductor 

nanoparticles, are a promising type of NPs which possess 

exceptional optical properties including high fluorescent 

quantum yield, broad absorption, narrow emission and 

high photostability. These properties make QDs an 

attractive candidate for in vivo imaging instead of 

fluorescent dyes.61 

Similar to other NPs, cytotoxicity of QDs depends on 

parameters including size, shape, concentration, charge, 

redox activity, surface coatings and mechanical stability of 

these particles. Toxicity of uncoated core CdSe or CdTe-

QDs have been investigated in some literature. Two major 

mechanisms are involved in the toxicity effects of these 

inorganic nanoparticles are as follows:62-65 

1) Cd+2 ions existing in QDs structure: 

These toxic metal ions cause toxic effects through 

several routes such as interference with DNA repair 

and substitution for physiologic Zn. Cd+2 ions 

increase oxidative stress but they cannot directly 

generate free radicals.  

2) Free radical formation:  

QDs of CdSe and CdTe are highly reactive, thus, 

photoactivation of these QDs via visible or UV light 

leads to their oxidation. Indeed, a photon of light 

could excite the QD and consequently generates an 

excited electron that transfers to molecular oxygen, 

forming singlet oxygen. Reaction of singlet oxygen 

with water/other biological molecules results in 

production of free radicals.  

Kauffer et al. recently demonstrated that variation in core 

compositions and surface chemistries of QDs, CdSe QDs 

vs. CdS QDs, lead to their different cytotoxicity. The 

former produced •OH radicals immediately after light 

activation, while the latter required extensive irradiation 

to generate an equivalent amount of radicals. Therefore, 

the toxicity observed for CdSe QDs could be directly 

related to •OH radicals produced. Indeed, cytotoxicity of 

colloidal NPs can be controlled and relieved by choosing 

appropriate materials for QD core and suitable irradiation 

condition.66 

 

Cytotoxicity of gold nanoparticles 

Gold nanoparticles (GNPs), are one of the promising 

inorganic (NPs) that have attracted scientific and 

technological interests due to their ease of synthesis, 

chemical stability and excellent optical properties.67-69 

These unique properties of GNPs, make them appealing 

tools for cancer diagnosis and treatment.70-72 

Most of in vitro studies have indicated that these NPs are 

nontoxic for cells. Evaluation of GNPs cytotoxicity is 

essential because of broad spectrum application of GNPs 
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in biomedical sciences. In the most of literature 

investigations have demonstrated that these inorganic 

nanoparticles are nontoxic. Cytotoxicity of GNPs 

depends on their size, shape and surrounding ligands.73,74 

Anisotropic GNPs have more potential oxidation than the 

isotropic ones due to their highly exposed surface areas 

and defects. Also, in some literature investigations 

exhibited that spherical GNPs are suitable for biomedical 

application.75-77 

Recently, the cytotoxicity effects of 5 and/or 15 nm 

GNPs 5 and 15 nm in vitro on Balb/3T3 mouse 

fibroblasts have been investigated. In order to understand 

the observed differences in cytotoxicity of two sizes of 

GNPs, Gioria et al. examined the uptake and the 

intracellular distribution of the NPs. The results indicated 

cytotoxicity effects only for the cells treated with 5 nm 

GNPs but no toxicity was revealed on Balb/3T3 for 15 

nm GNPs. This observation is due to high number of 5 

nm GNPs taken-up by cells in comparison to the larger 

particles (15 nm particles).78 

 

Cytotoxicity of silver nanoparticles 

Antimicrobial properties of silver nanoparticles (AgNPs) 

cause to the use of these NPs in a broad spectrum of 

consumer products including cosmetics, electronics, 

household appliances, textiles, and food products.79,80 In 

the recent decade, AgNPs have been used in medical 

fields such as drug delivery, designing biosensors, and 

imaging contrast agents etc.81-83 Thus, toxicity assay is an 

important factor to be considered in their application for 

biomedical purposes. Cytotoxicity of these NPs is related 

to comfortable oxidation AgNPs to Ag+ ions which are 

very toxic for biological systems and cellular 

components.84-87 

Compton and coworkers in a study showed that AgNPs 

in aqueous system are more toxic compared to the bulk 

Ag is more toxic due to the presence of dissolved 

oxygen, its reduction on NPs and then the release of 

H2O2 from AgNPs. Also, results demonstrated that ROS 

generation from nanoparticulated Ag are greater than that 

of macro (bulk) silver.88 

Recently, in a report the size- and coating-dependent 

toxicity of thoroughly characterized AgNPs was 

investigated following exposure to human lung cells. The 

results revealed that only the cytotoxicity of the 10 nm 

particles was independent of surface coating. In contrast, 

all AgNPs tested caused an increase in overall DNA 

damage after 24 h which suggests independent 

mechanisms for the cytotoxicity and DNA damage. 

However, there was no increased production of 

intracellular ROS; therefore, the toxicity observed was 

related to the rate of intracellular Ag release. Interaction 

with thiol and amino groups of biomolecules and 

appearance of the toxicity effect on cellular components 

were a result of sliver release. Thus, AgNPs with higher 

Ag release are more toxic.89 

 
Table 1. Some in vitro assays with type of NPs and cell types. 

Assay Type of NPs Type of cells (system) References 

MTT assay 
QDs Human embryonic kidney cells 90 

TiO2 Human erythrocyte/ lymphocyte cells 59 

Natural red TiO2 NPs Zebrafish embryos 91 

LDH test 
TiO2 NPs Human kidney cells 

92 
CNTs human pneumocytes cells 

MTS assay 
Ag NPs mouse embryonic fibroblasts 93 

Gold NPs Mammalian cells 94 

Trypan blue 
Gold NPs mouse fibroblast  78 

TiO2 NPs human lung epithelial cells 95 

 

Conclusion 

Despite the wide spread applications of nano-sized 

materials in various sciences areas, there are numerous 

reports about side effects of these materials on biological 

systems and cellular compartments. In addition to 

physicochemical properties, the production of toxic ions, 

fibrous structure, high surface charge and generation of 

radical species result in cytotoxicity by NPs including 

carbon nanotubes, titanium dioxide NPs, quantum dots, 

gold NPs and silver NPs. Both in vivo and in vitro assays 

are used for toxicity assessment of NPs. In vitro assays 

have received more attentions compared to in vivo 

assays due to being faster, convenient, less expensive, 

and devoid lacking any ethical issues. 
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