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Abstract: Tissue engineering and regenerative medicine approaches use biomaterials in combination
with cells to regenerate lost functions of tissues and organs to prevent organ transplantation. However,
most of the current strategies fail in mimicking the tissue’s extracellular matrix properties. In
order to mimic native tissue conditions, we developed cell-derived matrix (CDM) microtissues
(MT). Our methodology uses poly-lactic acid (PLA) and Cultispher® S microcarriers’ (MCs’) as
scaffold templates, which are seeded with rat bone marrow mesenchymal stem cells (rBM-MSCs).
The scaffold template allows cells to generate an extracellular matrix, which is then extracted for
downstream use. The newly formed CDM provides cells with a complex physical (MT architecture)
and biochemical (deposited ECM proteins) environment, also showing spontaneous angiogenic
potential. Our results suggest that MTs generated from the combination of these two MCs (mixed
MTs) are excellent candidates for tissue vascularization. Overall, this study provides a methodology
for in-house fabrication of microtissues with angiogenic potential for downstream use in various
tissue regenerative strategies.

Keywords: poly-lactic acid microcarriers; Cultispher® S; rat bone marrow mesenchymal stem cells;
microtissue; cell-derived matrix; angiogenesis

1. Introduction

In order to successfully mimic native tissues ex-vivo to restore or replace injured
ones, great efforts have been made towards the development of modular tissue engineer-
ing (TE), where microstructural functional units are assembled to create complex tissue
constructs [1]. In contrast with traditional top-down strategies, scaffold modularity al-
lows the generation of complex structures that recapitulate native tissue architecture [2–5].
Moreover, bottom-up strategies allow to mimic tissue heterogeneity by reproducing its
cellular microenvironment and biochemical properties, and direct physical arrangement
by assembling small building blocks into macroscale tissue-like constructs [5,6]. Currently,
modular constructs produced by functional subunits include different strategies, such as
cell-laden hydrogels [7,8], cell-sheets [9,10], spheroids [11–13], direct tissue printing [14],
and cell-laden microcarriers (MCs) [15–17].
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From these strategies, cell-laden MCs represent a promising option in bottom-up TE
applications. Their fabrication methods, material, size, porosity, coating, or encapsulat-
ing capacity, among other features, make them versatile candidates for many regenera-
tive/substitutive applications of different human tissues [6,18,19]. An example of commer-
cially available MC is crosslinked gelatin Cultispher® S, which has been used to induce
bone regeneration [18–22]. Another promising alternative to decellularized tissues/organs
is the in vitro production of cell-secreted ECM scaffolds, the so-called cell-derived extracel-
lular matrix (CDM) [23,24]. CDMs recreate in vivo environments under controlled in vitro
conditions, allowing the generation of functional microtissues (MTs) [25,26]. CDMs present
customizable features when these are combined with bioactive biomaterials [24].

Herein, we present a methodology to produce 3D MTs by seeding rat bone marrow
mesenchymal stem cells (rBM-MSCs) at the surface of polymeric MCs. This 3D modular
architecture aims to induce CDM deposition that aggregates into a tissue-like construct. We
compared poly-lactic acid (PLA) MCs, previously developed in our group (PLA MTs) [27]
versus the commercially available Cultispher® S gelatin MCs (Cultispher® S MTs), as well
as combining both particles (mixed MTs) to produce MTs. Since de novo angiogenesis
and vascularization of any injured region is crucial for a successful tissue and function
regeneration [28,29], MTs angiogenic potential was assessed using the Chick embryo
Chorioallantoic Membrane (CAM) model. This novel strategy can be relevant to produce
auto- and allografts for tissue engineering applications in tissues and organs that require
an extensive vessel network formation, such as bone, dermis, or muscle. Moreover, MTs
can be used for disease modeling, such as in cancer progression and metastasis events.

2. Materials and Methods
2.1. Materials

Poly(lactic acid) (Purasorb® PLDL 7038; 3.8 dL/g viscosity; Mw≈ 850,00 Da) was
obtained from Corbion (Amsterdam, The Netherlands). (-)-Ethyl-L-lactate (purity > 99.0%),
ammonium hydroxide (NH4OH), polyvinyl alcohol (PVA, 9–10 kDa, 80% hydrolyzed),
N-hydroxysuccinimide 98% (NHS), Triton® X-100, Tris-EDTA 100X, and Sigmacote® were
acquired from Sigma-Aldrich (Madrid, Spain). Cultispher® S gelatin microcarriers were
kindly provided by Percell Biolytica (Astorp, Sweden). Nunc™ 96-Well Polystyrene Round
Bottom Microwell Plates with non-treated surface were acquired from Thermo Fisher
(Spain). Human recombinant collagen type I (hrCol I) was purchased from FibroGen (San
Francisco, CA, USA). Sodium hydroxide (NaOH) was purchased from Panreac (Barcelona,
Spain). 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide (EDAC), Glycine BioUltra, and
Vectashield® Antifade Mounting Medium were acquired from Acros Organics (Amsterdam,
The Netherlands), Fluka (Zaragoza, Spain), and Vectorlabs (CA, USA), respectively.

2.2. Poly-Lactic Acid Microcarriers Fabrication, Biofunctionalization and Characterization

Poly-lactic acid microcarriers (PLA MCs) were prepared by an emulsion/solvent
evaporation technique, using ethyl-lactate as solvent [27]. Briefly, a 3.5% w/v PLA solution
in ethyl-lactate was extruded through a double-bore needle (inner 30G) at a dispensing
rate of 10 mL/h. A nitrogen gas coaxial flow (outer 22G) at 1 atm was used for breaking
the solution jet into droplets. PLA MCs were formed by precipitation into a hydroalcoholic
coagulation bath (0.3% w/v PVA in 70% v/v ethanol). Finally, MCs were washed and
sieved through a 300 and a 40 µm strainer to remove any large aggregate and smaller than
40 µm particles. MCs size and size distribution were assessed using a Leica E600 optical
microscope and calculated employing FIJI (ImageJ, v. 1.53c) software [30].

PLA MCs’ surface modification was performed by covalently attaching human re-
combinant collagen type I (hrCol I) to foster cellular response and adhesion to the mate-
rial [31,32]. First, PLA ester bonds were hydrolyzed with 0.5M NaOH for 10, 30, and 60 min.
Then, exposed -COOH terminal groups were activated with 0.1M/0.2M EDC/NHS solu-
tion in 70% ethanol for two hours 2 h. Activated MCs were incubated in hrCol I overnight
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(100 µg/mL in PBS). Finally, functionalized MCs were washed with water and freeze-dried.
MCs were stored at 4 ◦C until used.

2.3. Cell Culture

rBM-MSCs were isolated from long bones of 2–4 weeks old Lewis rats by the experi-
mental animal service of the Scientific Park of Barcelona (SEA-PCB). Rats were anesthetized
with 5% isoflurane and sacrificed in a CO2 saturated atmosphere [33]. rBM-MSCs were
cultured in aDMEM (Gibco, Barcelona, spain) supplemented with 10% FBS (Sigma, Madrid,
Spain), 1% penicillin/streptomycin (100 µg/mL) and 1% L-glutamine (2 mM; Sigma). Pas-
sages between 4–6 were used in all experiments. All animal care protocols were approved
by the Committee on Ethics and Animal Experiments of the Scientific Park of Barcelona
(Permit No. 0006S/13393/2011, 2011).

2.4. Microcarrier Cell Seeding and Microtissue ProductionCell Seeding &Microtissue Production
under Static Conditions

Three different culture formats were tested for MT formation under static conditions—
(i) 96-well plates (U96; Nunc, U-shaped bottom non-treated surface #262162); (ii) 6 mm
diameter and 5 mm depth wells in 1 cm3 polydimethylsiloxane (PDMS) molds; and
(iii) ultra-low attachment 24-well plates (24w) tilted 45◦,45◦ allowing the accumulation
of cell-seeded MCs at the bottom of the wells. Standard protocols were initiated with
3 mg MCs per well. This was adapted for U-96 format reducing MCs content six times
(0.5 mg). For each of these culture formats, three different cell/MCs seeding protocols were
determined—(i) 25,000 cells/mg MCs, (ii) two-step seeding of 12,500 cells/mg MCs with
an interval of 20 min, and (iii) 50,000 cells/mg MCs. Briefly, PLA MCs were rehydrated
and sterilized in 70% v/v ethanol for 12 h prior to cell culture. Then, repeated washings
were performed with sterile PBS until the culture medium was added. Cultispher® S MCs
were sterilized according to the manufacturer’s instructions. MCs were placed in the wells
or molds, and rBM-MSCs cell suspension was added on top of the MCs. Cells were kept in
a 37 ◦C, 5% CO2 humidified incubator. Cell medium was replaced every 2–3 days, for a
total culture period of 21 days.

2.5. Microcarrier Cell Seeding and Microtissue ProductionCell Seeding & Microtissue Production
under Dynamic Conditions

A 250 mL spinner flask device was used (BellCo, NJ, USA) for dynamic seeding.
A hydrophobic layer of Sigmacote® was created on the glass surface to avoid protein
adsorption. Hydrated PLA MCs were placed inside autoclaved spinner flasks alongside
100 mL cell suspension in cell medium. Studied parameters under spinner flask dynamic
seeding were: (I) The stirring regime, (II) serum content, (III) cell/MC ratio, and IV) seeding
time. Two different stirring regimes were tested, 3 min 30 rpm/27 min 0 rpm and 15 min
30 rpm/15 min 0 rpm for 8 h. The spinner flask bioreactor was placed on a multiple
magnetic stirrer block (Biosystem 4 Direct, Thermo Scientific, Barcelona, Spain) inside
cell culture incubators (5% CO2, 37 ◦C) for 6 h. The effect of serum deprivation was also
evaluated and compared with complete cell media (10% FBS). Different cell numbers per
MC were tested (8, 10, or 12 cells per MC) to ensure maximum colonization. In addition,
the optimal seeding time in the spinner flask was assessed (4, 8, 24, and 48 h). In all cases
(II, III, and IV) an intermittent agitation (3 min 30 rpm/27 min 0 rpm) was used during
the seeding. For 24 and 48 h cultures, intermittent agitation was only maintained during
the first 8 h of incubation, and then continuous stirring was applied. Afterwards, 3 mg of
cell-seeded MCs were transferred to each well of non-adherent 24-well plates. Plates were
kept at 37 ◦C and 5% CO2 in a 45◦ titled position to promote the MT formation for 21 days.

Once determined the optimal culture conditions for MTs fabrication, PLA (PLA MT),
Cultispher® S (CultiS MT), and a combination of both PLA and Cultispher® S (1:1) (mixed
MT) MTs were produced following the established protocol for culture periods of 1, 7, 14,
and 21 days.
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2.6. Cell-Seeded Microcarriers’ Vital Staining

Cell viability after cell seeding in MCs surface was evaluated through life/dead
staining using Calcein-AM and propidium iodide according to the manufacturer’s protocol
(ThermoFisher). Samples were imaged under E600 Leica microscope (Wetzlar, Germany).
In order to dismiss unspecific attachments, we introduced the concept of MC colonization
rate (MCCR) as the number of MCs with three or more cells attached to them, divided by
the total amount of MCs (Equation (1)).

MCCR =
N◦ of MC colonized by three or more cells

Total CR number
× 100 (1)

2.7. Microtissue Size and Morphology Size & Morphology

MT size and morphology were evaluated using Leica stereomicroscope (Wetzlar,
Germany), and ultra-high resolution field emission scanning electron microscopy (SEM,
NOVA NanoSEM 230, FEI Company, Madrid, Spain). After 7, 14, and 21 days in culture,
MTs were fixed in 4% PFA for 10 min at 4 ◦C, washed twice in cold PBS, and dehydrated
in an increasing alcohol gradient. Then, samples were dried through critical point drying,
and carbon sputtered. The size was analyzed by FIJI software (v. 1.53c) [30].

2.8. Cell Proliferation

Quant-IT Picogreen double-stranded DNA (dsDNA) assay kit (Invitrogen, Co Dublin,
Ireland) was used to quantify total DNA to assess cell proliferation. MTs were collected
at days 1, 7, 14, and 21, washed with PBS, and stored in tris-EDTA (TE) at −20 ◦C. MTs
were homogenized by 15 s sonication in ice and using micro-tube adapted pestles. Three
freeze-thaw cycles were performed (−80 ◦C/RT). Samples were centrifuged to remove
MCs (5 min, 4000 g, 4 ◦C) and incubated with Quant-IT Picogreen reagent solution for
5 min at RT in the dark. Fluorescence was measured at 480/520 nm (excitation/emission)
using a spectrophotometer plate reader (Infinite M200 PRO, Tecan, Barcelona, Spain).

2.9. Protein Deposition Quantification

BCATM Protein Assay kit (Pierce, Thermo Scientific) was used to quantify total
protein from the MTs. Samples were collected at 1, 7, 14, 21 days and were homogenized in
Mammalian Protein Extraction Reagent (M-PER) as described in Section 2.8. Three freeze-
thaw cycles were performed (−80 ◦C/RT). Samples were centrifuged to remove MCs (5 min,
4000 g, 4 ◦C) and the supernatant was used for protein quantification according to the
manufacturer’s protocol. Absorbance was measured at 562 nm using a spectrophotometer
plate reader (Infinite M200 PRO plate reader, Tecan).

2.10. Immunofluorescence Staining

MTs ECM composition was assessed by immunofluorescence staining. MTs were
collected after 21 days in culture and fixed in 4% PFA, dehydrated in increasing sucrose
solutions (5%, 10%, and 30% w/v), and embedded in Tissue-Tek® optimal cutting tempera-
ture (O.C.T.) Compound (Sakura® Finetek, VWR, Barcelona, Spain). Samples were stored
at −80 ◦C for 24 h. 25 µm thick sections were cut using Leica CM3050 S Research Cryostat.

Before staining, slides were thawed, and O.C.T was removed by MiliQ H2O washes.
Cells were permeabilized (0.1% v/v Triton in 0.15% w/v glycine/PBS) for 10 min and
blocked (1% w/v BSA and 10% goat serum in 0.15% w/v glycine/PBS) for 30 min. Then,
slides were incubated with primary antibodies (1/500 in blocking solution, overnight at
4 ◦C, Table 1). After several washings, samples were stained with the secondary antibodies
(1/1000) for one hour1 h at RT in dark conditions (Table 1). Then, the cell cytoskeleton
and nuclei were stained with Phalloidin-Rhodamine (100 nM, 20 min, RT) and DAPI
(1 µg/mL, 1 min, RT), respectively. Samples were mounted in Vectashield® Antifade
Mounting Medium and imaged by confocal microscopy (LSM780, Zeiss, Jena, Germany).
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Table 1. Antibodies used in immunofluorescent staining.

Primary Antibodies Secondary Antibodies

Reactivity Host Ref. Reactivity Host Emission Ref.

Collagen type I Mouse ab6308 Mouse Goat 488 nm ab150117
Collagen type II Rabbit ab34712 Rabbit Goat 488 nm ab150081
Collagen type III Rabbit ab7778 Mouse Donkey 594 nm SAB4600098
Collagen type IV Rabbit ab6586

Fibronectin Rabbit ab2413
Actin Mouse sc-47778

Laminin Rabbit ab11575

2.11. Microtissue Decellularization

MTs were decellularized by incubating with 1% Triton X-100 in a 0.1% NH4OH 30 min
at 37 ◦C. Then, a DNase I treatment was later applied (30 µg/mL, 30 min, 37 ◦C).

2.12. Microtissue Angiogenic Potential—CAM Model

The angiogenic potential of the CDMs was assessed using the CAM model. Shell-less
cultured ex-vivo models were adapted from a previously described protocol [34]. Fertilized
chicken eggs were purchased from a local farm (Granja Gibert SA, Barcelona, Spain) and
stored in a humidified incubator at 37 ◦C. After three days, the eggshell was aseptically and
carefully cracked, transferring embryos into sterile Petri dishes (15 cm diameter). Embryos
were kept in the incubator for six days. On the ninth day of development, 14-day PLA,
mixed and Cultispher® S decellularized MTs were prepared for implantation.

Implant preparation consisted of a single 6 mm circle nylon mesh (180 µm, Merck
Millipore, Burlington, MA, USA) which guided implant CAM position over time. Decel-
lularized MTs were carefully placed on top of nylon meshes, and they were embedded
in 30 µL rat tail collagen type I solution (Opticol, Cell Guidance Systems, MO, US). As a
negative control condition, polycaprolactone (PCL) irregular macroparticle (same macro-
scopic size as sample MTs) were used to simulate 3D microstructure. As a positive control
condition, 200 ng vascular endothelial growth factor (VEGF) was added into collagen type I
embedding solution covering PCL macroparticle implants. Implants were let to polymerize
in a 37 ◦C incubator for 45 min. For the implantation, five implants per embryo were
placed in areas containing fine vessels, avoiding any large blood vessels. Six to ten embryos
per condition were used. After three more days of incubation, embryos were sacrificed
by decapitation, and 10% formalin solution was used to fix the CAM for 30 min. Finally,
scaffolds and their surrounding CAM tissue (1 cm around) were excised, and images were
taken with an Olympus MVX10 Microscope. MTs’ angiogenic potential was quantitatively
measured by determining vascular density in MTs. FIJI software was used following the
script described in the supplementary information (Fiji macro S1).

2.13. Statistical Analysis

Results were statistically analyzed using GraphPad Prism 6 and expressed as mean
and standard deviation of the replicates (n = 3, unless otherwise stated). One or Two-way
Analysis of Variance (ANOVA) was used. Multiple comparisons test was performed using
Tukey’s tests.

3. Results and Discussion

Decellularized in vitro CDMs is a promising methodology for developing biomimetic
TE constructs [25,35–37]. The ECM secretion can be directly enhanced by the 3D architecture
of scaffolds [38]. In this regard, MCs offer three-dimensional (3D) physical support for
cells to sense and respond to complex architectures, while their biocompatibility and
biodegradability allow for their in situ replacement by native tissues [27], making MCs
suitable candidates for CDMs fabrication. In our study, we have determined the optimal
conditions for the in vitro creation of CDM MTs from PLA, Cultispher® S and mixed MCs.
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3.1. PLA Microcarrier Characterization

Using PLA/ethyl-lactate extrusion through a doubled-pore needle we obtained spher-
ical MCs [27] with an average diameter of 81.85 ± 23.25 µm (Figure 1A). The MCs poly-
dispersity adds structural heterogeneity to MTs, representing an advantage to better fit
defects and adapt to injured sites. Moreover, this approach is inexpensive, non-toxic,
and environmentally friendly. The MCs’ size and morphology were also assessed using
SEM, confirming their size, polydispersity, and spherical shape (Figure 1B). MCs were
surface-functionalized with collagen type I to improve their cell-adhesion properties. MCs
were exposed to 10-, 30-, and 60-min hydrolysis, and collagen type I was covalently bound
through ECD/NHS chemistry. Confocal images showed no qualitative differences between
the different conditions tested (Figure 1C–E). Ten minutes hydrolysis was chosen to avoid
polymer roughness and steric hindrance [31], to obtain uniformly functionalized spherical
PLA MCs for downstream 3D cell culture.
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3.2. Microtissue Development and Optimization

MCs-assisted MT formation is based on the intrinsic capacity of cells to self-assembly
during 3D culture through ECM deposition [39]. Static MTs formation was performed
using different cell culture conditions and seeding densities. The cell culture conditions
included the usage of various strategies, such as PDMS molds, U96 (u-shaped bottom
surface), and flat 24-well low-attachment plates (Figure 2). In PDMS molds, no MTs were
formed during 21 days of culture at any cell seeding condition, with cells spreading on
PDMS and MCs randomly distributed in the wells. In U96 plates and 24-well plates
cells were found attached to MCs and deposited ECM embedding them, forming MTs.
No significant differences were found in the MTs size between the different cell-seeding
conditions tested in U96 well plates. However, by using low-attachment surfaces that
promote cell aggregation [11,40], differences in seeding protocol were observed. The
two-step seeding protocol with a final cell/MC concentration of 25,000 cells/mg MC
yielded statistically significant larger MTs (16.07 ± 2.83 mm2, p ≤ 0.001) than the two other
conditions (8.71 ± 2.40 mm2 for 50,000 cells/mg; and 7.58 ± 1.11 mm2 for control condition)
(Figure 2). Between U96 and 24-well plates approaches, MT size statistical differences were
only found in the two-step seeding of 12,500 cells/mg MC (16.07 ± 2.83 mm2 for 24-well;
6.76 ± 2.12 mm2 for U96). MTs generation in 24-well plates resulted in the formation of
dense structures easy to manipulate. Moreover, low-attachment plates also promoted cell
attachment to PLA MCs. In contrast, U96 conditions showed a less dense structure where
pores along the MT were easily observed (Figure 2).
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Figure 2. Microtissues (MT) fabrication and optimization under static conditions. Static cell-seeding
in U96 well plates, polydimethylsiloxane (PDMS) molds, and 24-well plates at different cell/MC
ratios, scale bars: U96 conditions = 3 mm; PDMS molds and 24 well plates = 2 mm.

Cell adhesion and ECM deposition were analyzed with SEM. ECM secretion following
21 days was not uniform between the different cell culture conditions. U96 MTs exhibited a
non-complete CDM layer on the surface in both the two-step seeding and control condition
(Figure A1A,B), and almost no CDM was found at 50,000 cell/mg condition (Figure A1C).
In line with previous observations [41,42], we found that as cell proliferation and ECM
deposition occurs, MTs contract from half-moon shape to spheres.

In contrast, the use of 24-well plates revealed an abundant fibrous, dense, and uniform
CDM secreted by cells on top of MCs (Figure A1D–F). Transversal sections of MTs in all
24-well plates exposed a thin fibrillar network in between MCs (Figure A1G–I). Qualitative
differences can be observed between MTs’ surface and core, where cell density and the
amount of CDM were significantly lower than in the surface. Therefore, a 24-well plate
culture strategy was used for the consequent experiments.

Generally, static seeding is described to be inefficient compared to dynamic seeding
procedures, yielding lower efficiency and poor homogeneity [43]. Improved cell-MC
attachment using intermittent agitation has been extensively reported against static or
continuous regime [44]. To improve cell seeding, MCs colonization was further studied
in dynamic conditions using a spinner flask bioreactor [16,45–47] to homogenize the
cellular distribution and CDM deposition along the MTs. An intermittent stirring regime,
serum deprivation, and cell/MCs ratio were investigated as main parameters involved in
the optimal MCs colonization. Cell cultures were stirred intermittently at 30 rpm using
two different stirring regimes for eight hours—8 h: 3 min 30 rpm/27 min 0 rpm and
15 min 30 rpm/15 min 0 rpm. Up to 94.37% of MCs were colonized after 8-h cell seeding
applying a 3-min stirring regime, whereas only 43.29% of MCs were colonized in the
15 min regimen (Figure 3A). These differences in MC colonization could be explained by
higher cell death resulting from longer stirring periods, as well as by an increased number
of cell clusters. Total deprivation of FBS showed a significant decrease (60.6%) in MCs
colonization compared to the FBS supplemented cell media (94.4%) (Figure 3B). Although
serum usage in cell seeding is still controversial [48], our results indicate that its presence
is critical for cell adhesion to MCs. This increase in cell adhesion can be explained by the
adsorption of serum protein to functionalized biomaterial surfaces [49,50], demonstrating
serum as an indispensable media component for cell adhesion in MCs.
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** p-value ≤ 0.01, **** p-value ≤ 0.0001.

The impact of cell/MC ratio on MCs colonization efficiency was also evaluated. To
ensure complete MCs colonization, cell number must exceed the total amount of MCs [51],
as the cell/MC ratio can be affected by cell death and aggregates formation, which leads
to a smaller number of available cells to attach in MCs’ surface. On the other hand, using
higher cell/bead ratios may result in cellular aggregates, due to cell-cell interactions.
The appropriate ratio relies on MC’s size and its surface area. For PLA MCs with an
average surface area of 2000 cm2/g, cell/MC ratios higher than 10 cells/bead resulted
in significantly lower MC colonization and promoted cell-cell aggregates (12 cells/MC
83.2%). Instead, no statistically significant differences were observed between 8.3 (86.3%)
and 10 cells/MC (93.6%), choosing this last condition for further experiments (Figure 3C).

The effect of time seeding on the MCs colonization was also assessed. Results showed
a progressive decrease in particle colonization at longer seeding times (Figure 3D,E). The
maximum microcarrier colonization rate (MCCR) was observed after the first 4 h, where
94.4% of the MCs were colonized. Although non-statistically significant differences were
observed, the colonization ratio decreased around 10% after 8 h of intermittent stirring.
Finally, long-term cell-seeding in spinner flasks was not able to support cell proliferation in
PLA MCs, as seen by the low cell survival rates observed after 24 and 48 h. We hypothesize
that rBM-MSCs do not survive for long periods without physical support to attach, and
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together with prolonged induced agitation-stress, this results in reduced cell survival and
MC adhesion [52].

After MC colonization, cell-seeded MCs were transferred into low attachment 24-
well plates to allow cell proliferation and ECM deposition (static cell culture), as this
culture system displayed improved outcomes. Plates were titled in 45◦,45◦ allowing
cell-seeded MCs to sink down to the wells’ bottom. After 21 days of culture, MTs were
studied with SEM (Figure 3F). The average size ranged from 4–7 mm length × 1.5–2.5 mm
width × 0.5 mm depth. Qualitative differences were observed between statically seeded
MCs (Figure 3(F1–F6)) and stirred seeded MCs (Figure 3(F7–F10)). The stirred seeding
favored a homogenous cell distribution in MCs, which led to a uniform ECM deposition
within MTs’ core (Figure 3(F8)) compared to static seeding where cells and ECM were
mostly found on MTs’ surface [53,54]. Therefore, in the following experiments, CDM MTs
were produced using 3 min intermittent agitation, with serum-supplemented medium, at
10 cell/MC ratio and a total cell seeding period of 4 h.

3.3. Microtissue Production and Characterization Using PLA, Cultispher® S, and Combining Both
Microcarriersthe Combination of Both Microcarriers

In order to evaluate the effect of materials on cell behavior and CDM deposition,
PLA MTs’ were studied and compared to MTs produced using the commercially available
Cultispher® S MCs and the combination of both MC types (mixed MTs). Initially, MC cell
adhesion, survival (Figure 4A–C), proliferation, and protein deposition were assessed for
every condition. All MC types successfully allowed cell adhesion, with Cultispher® S MCs
(99.8% MCCR) showing the highest cell colonization compared to the other conditions (PLA
MTs: 72.0%; mixed MTs: 80.7% MCCR) (Figure 4D). These differences are related to MC
composition, porosity, roughness, and size. Gelatin, the main component of Cultispher® S
MCs, is a natural polymer that inherently contains important biological cues for protein
adsorption and cell adhesion [55].
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Cell proliferation was assessed at 1, 7, and 21 days (Figure 4E). The combination of both
MC types (mixed MTs) allowed a sustained increased proliferation up to 21 days (total DNA
content at Day 1: 388.36 ± 60.34 ng/mL, and at Day 21: 584.99 ± 40.62 ng/mL) compared to
the other tested conditions. Cultispher® S MTs showed an increased cellular DNA content
from day 1 (266.22 ± 39.91 ng/mL of DNA) to day 7 (372.78 ± 67.48 ng/mL of DNA), but
no significant proliferation was observed until the end of the culture (436.80 ± 53.03 ng/mL
of DNA), probably due to restricted available surface for cell division [56] leading to a
CDM deposition state. Finally, rBM-MSCs seeded on PLA MCs significantly proliferated
between day 1 (183.34 ± 36.88 ng/mL of DNA) and 21 (493.50 ± 29.14 ng/mL of DNA),
suggesting both polymeric MCs support cell proliferation.

Protein deposition was assessed during the MT formation process (Figure 4F), showing
an increase from day 7 until day 21 for all conditions, but not between day 1 and 7. These
results correlate with our findings regarding cell proliferation. During the first seven
days of culture, cells show a proliferative behavior, whereas from day 7 until day 21, cells
enter a protein deposition state. Regarding Cultispher® S and mixed MTs, no significant
increase was observed over time within conditions. No statistical differences were observed
between conditions.

After 7, 14, and 21-days culture, all conditions were analyzed by SEM (Figure 5). After
seven days, MT structures with evident CDM deposition, were already observed. MCs
from all conditions appeared embedded in ECM, highlighting PLA MTs as the condition
showing higher CDM density. From day 7, PLA MCs were successfully embedded by CDM,
increasing its density over time. SEM images also showed a complete MC embedding in
Cultispher® S and mixed MTs after 21-day culture. Cultispher® S and mixed MTs exhibit a
denser surface and core deposited CDM, suggesting Cultispher® S MCs role enhancing
CDM deposition and the architecture provided by combining the two MC types, resulting
in bigger spaces between particles to be filled by cells and deposited CDM. Therefore,
Cultispher® S MTs allowed higher CDM density after a 21-day culture period. Another
remarkable observation was the contraction process that MTs underwent during the 21-day
culture (Figure A2). Over time, cells exert forces and deposit high amounts of CDM that
induce tissue contractility, stiffening, and therefore, an increase in protein density.
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SEM micrographs (Figure 5), focusing on MTs’ surface, suggested different protein
deposition densities and distributions between different MT types. Higher CDM density
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was observed on Cultispher® S MTs compared to the other MTs. Differences in CDM
morphology were also observed between MTs. CDM deposited on Cultispher® S MTs
displaying an aligned pattern, while CDM on mixed, and especially on PLA, MTs appeared
in a more random distribution. Moreover, some areas on the surface of PLA MTs were
not completely covered. However, CDM density in MTs’ core was qualitatively higher
in mixed MTs. We hypothesize that higher mixed MTs porosity than in PLA MTs, but
smaller than Cultispher® S MTs, together with the combination of both biomaterials, might
provide a more suitable microenvironment for cells to deposit ECM proteins successfully
embedding all MCs. Cell-seeded MCs successfully aggregated forming MTs constructs on
all MCs conditions, mainly attributed to cell-cell interactions and CDM deposition [47].

We hypothesize that the porosity of mixed MTs, together with the combination of both
biomaterials, might provide a proper microenvironment that promotes cell ECM deposition.

Together, no differences were observed in cell proliferation and ECM proteins deposi-
tion after 21-day culture. Moreover, cell-seeded MCs were successfully embedded in CDM,
obtaining robust MTs.

3.4. Microtissue Cell-Derived Matrix Proteins Immunofluorescence Staining

MTs’ biochemical composition was assessed and compared among conditions. Col-
lagen types I, II, III, and IV expression was analyzed with immunofluorescence staining.
All MT conditions deposited all collagen types and fibronectin, although Collagen type
IV was qualitatively the most abundant of all analyzed proteins for all three MT condi-
tions (Figure 6) in line with Marinkovic et al. findings [57]. In PLA and Cultispher® S
MTs, collagen type IV was localized mostly at their surface, resembling the basement
membrane structure [58,59]. Instead, this protein was distributed more homogenously in
mixed MTs. Collagen type III was also deposited in all MC types. Differences in protein
distribution were observed between collagen type IV and collagen III, being the least
present throughout the whole MT structure. This result suggests the presence of a more
fibrous MT core. Low deposition of collagen I and especially collagen II was observed in
all MTs with no qualitative differences between conditions (Figure 6). As collagen type I
was under expressed compared to collagen types III and IV we hypothesize that PLA MC
collagen type I functionalization might hinder this protein expression, as cells can sense it
in MCs’ surface. Regarding collagen type II, limited deposition of this protein has been
reported in chondrogenic factors-free culture medium [60–62]. Moreover, MC composition
or mechanical properties can also affect BM-MSCs protein expression [63].

Figure 6 also shows fibronectin surrounding Cultispher® S MCs in small amounts, both
in mixed and Cultispher® S MTs. Instead, fibronectin found in PLA MTs was qualitatively
higher in abundance than in the other two conditions. This protein was found both in
the surface and core of PLA MTs, although it seemed to be strongly localized on MT’s
surface. We hypothesize that size and space between MCs can play an important role
in MC interconnectivity by CDM deposition. Higher particle size and distance between
particles can hinder cells from properly interconnecting MCs, and therefore, this can affect
MT structural integrity. Finally, MC composition can also have an impact on the type and
amount of deposited CDM. Nevertheless, all MT conditions showed good integrity when
manipulated, due to the total amount of deposited CDM.
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3.5. Microtissues Angiogenesis Ex Vivo

Since the angiogenic response of most injured tissues is crucial for their regeneration,
the angiogenic potential of our developed MTs was evaluated using the CAM ex vivo model,
which serves as an indicator for pro- or antiangiogenic potential of tested biomaterials or
substances [34,64]. Before MT implantation into chick embryos, a decellularization process
was performed to remove rBM-MSCs. Decellularized MTs did not show any cellular nuclei,
suggesting effective decellularization for all conditions (Figure 7A,B).



Biomedicines 2021, 9, 232 13 of 18

Biomedicines 2021, 9, 232 13 of 18 
 

3.5. Microtissues Angiogenesis Ex Vivo 
Since the angiogenic response of most injured tissues is crucial for their regeneration, 

the angiogenic potential of our developed MTs was evaluated using the CAM ex vivo 
model, which serves as an indicator for pro- or antiangiogenic potential of tested bio-
materials or substances [34,64]. Before MT implantation into chick embryos, a decellular-
ization process was performed to remove rBM-MSCs. Decellularized MTs did not show 
any cellular nuclei, suggesting effective decellularization for all conditions (Figure 7A,B). 

Chick embryos were placed in Petri dishes and implanted with decellularized MTs. 
PCL polymeric macroparticles scaffolds matching MTs size loaded with VEGF (positive 
control) or alone (negative control) were used as controls. 

 
Figure 7. Ex vivo MTs angiogenesis potential. (A) MT staining before decellularization and (B) after decellularization. 
Actin (red), nuclei (blue), scale bars = 100 μm. (C) Ex vivo stereomicroscope images from tested conditions, scale bars = 2 
mm. (D) Vascular area density quantification. ** p-value ≤ 0.01, *** p-value ≤ 0.001, **** p-value ≤ 0.0001. 

MTs were found to be fully integrated within the CAM, and vessel formation was 
clearly visible (Figure 7C). A significant increase in vessel density was observed in all MTs 
compared to the negative control, suggesting a vascularization-induction role from de-
posited CDM in MTs. Interestingly, these levels were higher in mixed MTs (18.86 ± 6.27 
pixels/mm2) compared to the other MTs (PLA MTs 11.43 ± 4.73 pixels/mm2; Cultispher® S 
MTs 10.83 ± 4.06 pixels/mm2) or negative PCL controls (5.47 ± 1.64 pixels/mm2) and similar 
compared to VEGF-loaded PCL scaffolds. (14.75 ± 4.74 pixels/mm2, Figure 7D). 

It has been shown that ECM proteins, as well as pro-angiogenic factors, retained in 
the ECM after the decellularization process, promote the formation of blood vessels [65]. 
The higher angiogenic response observed in mixed MTs may be explained by the amount 
of collagen produced, the MC-specific MT architecture, and the specific ECM organization 
[66]. Upholding our observations, researchers have described changes in newly generated 
microvessels size depending on the amount and density of collagen from the ECM [67]. 
Indeed, abundant interstitial collagen fibers raised more functional and mature capillaries 

Figure 7. Ex vivo MTs angiogenesis potential. (A) MT staining before decellularization and (B) after decellularization. Actin
(red), nuclei (blue), scale bars = 100 µm. (C) Ex vivo stereomicroscope images from tested conditions, scale bars = 2 mm.
(D) Vascular area density quantification. ** p-value ≤ 0.01, **** p-value ≤ 0.0001.

Chick embryos were placed in Petri dishes and implanted with decellularized MTs.
PCL polymeric macroparticles scaffolds matching MTs size loaded with VEGF (positive
control) or alone (negative control) were used as controls.

MTs were found to be fully integrated within the CAM, and vessel formation was clearly
visible (Figure 7C). A significant increase in vessel density was observed in all MTs compared to
the negative control, suggesting a vascularization-induction role from deposited CDM in MTs.
Interestingly, these levels were higher in mixed MTs (18.86 ± 6.27 pixels/mm2) compared to the
other MTs (PLA MTs 11.43 ± 4.73 pixels/mm2; Cultispher® S MTs 10.83 ± 4.06 pixels/mm2)
or negative PCL controls (5.47 ± 1.64 pixels/mm2) and similar compared to VEGF-loaded PCL
scaffolds. (14.75 ± 4.74 pixels/mm2, Figure 7D).

It has been shown that ECM proteins, as well as pro-angiogenic factors, retained in
the ECM after the decellularization process, promote the formation of blood vessels [65].
The higher angiogenic response observed in mixed MTs may be explained by the amount
of collagen produced, the MC-specific MT architecture, and the specific ECM organi-
zation [66]. Upholding our observations, researchers have described changes in newly
generated microvessels size depending on the amount and density of collagen from the
ECM [67]. Indeed, abundant interstitial collagen fibers raised more functional and mature
capillaries [68]. In addition, higher MC porosity, as well as reduced density in ECM found
in mixed MTs, might provide a suitable microenvironment for endothelial cells to migrate
within MTs and generate a complex vasculature network providing the necessary nutrients
and oxygen for tissue repair and regeneration.

Altogether, these results highlight a great potential for mixed MC MTs in tissue
neovascularization to provide nutrients and oxygen during tissue repair and regeneration
processes. As observed, distinct MC material, size, and mechanical properties can greatly
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influence the properties of the deposited CDM, and subsequently, their potential in different
tissue engineering applications. Moreover, MC-free CDM MTs can serve as platforms to
better mimic and study tissue microenvironments for regenerative purposes or to study
disease models.

4. Conclusions

In this work, we have defined a strategy for the formation of CDM MTs using rBM-
MSCs. MC culture and MT formation are promising strategies to generate CDM scaffolds
for modular TE approaches. The deposited CDM may greatly influence cell behavior from
surrounding tissues and induce spontaneous and effective tissue regeneration mimicking
the native tissue structure, composition, and mechanical properties. Therefore, our findings
suggest that the nature of the biomaterial used, its architecture, and the cell source greatly
impact MT features. Moreover, tuning up these parameters allows researchers to develop
tailor-made CDM according to the tissue regeneration/disease modeling objective. We
observed that all MT conditions generate a dense ECM embedding MCs without using
growth factors. Interestingly, by mixing both types of MCs, mixed MTs, we were able to
observe continuous cell proliferation, secretion of an abundant ECM, and promotion of
angiogenic response, a crucial step for bone, skin, or muscle tissue regeneration, as well as
to study cancer disease progression and metastasis. Together, these results reinforce the
need to study the interactions between biomaterials—and in particular, MCs templates—
and cells to develop 3D structures that mimic specific tissue microenvironments, with the
purpose of studying tissue regeneration and disease progression processes.
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Figure A1. MT SEM images from (A–C) U96 well-plates with 25,000 cells/mg MC, 12,500 cells/mg 
MC two-step seeding and 50,000 cells/mg MC, scale bars = 200 μm; (D–F) 24 well-plates with 25,000 
cells/mg MC, 12,500 cells/mg MC two-step seeding and 50,000 cells/mg MC, scale bars = 500 μm; 
and (G–I) transversal sections from 24 well-plates MTs with 25,000 cells/mg MC, 12,500 cells/mg 
MC two-step seeding and 50,000 cells/mg MC, scale bars = 100 μm. Arrowheads pointing fibrillar 
ECM. 

 

Figure A2. MT contraction process. Scale bars = 2 mm. 
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