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ABSTRACT 
 
Soil analysis is required for efficient use of inputs viz. seeds, fertilizers, irrigation water and other 
agricultural planning. However, there are several disadvantages of soil analysis such as they are 
time consuming, expensive and labour intensive. Many approaches are developed to overcome 
these difficulties. Hyperspectral spectroscopy is emerging as a promising tool for studying soil, 
water and vegetation. Therefore, an attempt has been made to review the scope of using 
hyperspectral reflectance spectroscopy for estimation of soil properties as an alternative to 
traditional laboratory soil analysis methods.  
Spectral signature of soil can be used for fast and non destructive estimation of soil properties. 
Diffuse reflectance in 350-2500 nm range of electromagnetic spectra forms the basis of 
hyperspectral spectroscopy. An object is characterized by the characteristic absorptions and peaks 
in the electromagnetic spectra. A number of calibration techniques are applied for establishing 
relationship between reflectance spectra and soil properties. Multiple Linear Regression (MLR), 
Principal Component Regression (PCR) and Partial Least Square Regression (PLSR) are most 
commonly used techniques. 
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MLR, PCR and PLSR are also used for prediction of several soil properties such as pH, soil organic 
carbon content, nitrogen, phosphorus, potassium, calcium, magnesium, sodium, iron, manganese, 
zinc, copper, boron, molybdenum, sand silt, clay and soil moisture. Some commonly used spectral 
indices are also applied for prediction of soil properties. Some of the soil physical properties viz. 
sand, silt and clay as well as chemical properties viz. pH and organic carbon could be estimated 
with good to very good prediction using pure spectra of soil. However, contrasting results of 
prediction of soil properties using multivariate analysis techniques have also been reported. The 
content of this review article will be helpful for researchers who are working on alternate methods of 
estimation of soil properties. 
 

 
Keywords: Hyperspectral spectroscopy; multiple linear regression; partial least square regression; 

principal component regression; soil spectra; spectral indices. 
 

1. INTRODUCTION 
  
Soil is the most vital natural resource for all the 
productive activity of the world. Soil provides all 
the basic requirements of human being i.e. food, 
feed, fodder, fibre and fuel. Thousands of years 
are required to produce one centimeter of soil 
through natural process (weathering of rocks and 
minerals). On the other hand, human population 
of the world is increasing at the rate of 1.16% 
and this rate is even more (1.25%) for South 
Asian Countries [1]. This has been projected that 
the human population of the world will reach 8.6 
billion in 2030, 9.8 billion in 2050 and 11.2 billion 
in 2100 from the current population of 7.6 billion 
[2]. The increasing human population has put 
tremendous pressure on the natural resources 
including the soil; most vital natural resource. 
 

Nutrient status of soil is very dynamic (with 
respect to time) and diverse (with respect to 
space). Hence, periodic monitoring of nutrient 
status of soil and inventory of spatial variability 
map of soil is the need of the hour [3]. Though 
soil analysis is essential for agricultural planning, 
this has several disadvantages such as they are 
expensive, time consuming, and often cause 
environmental pollution. Therefore, alternative 
techniques may be developed which are rapid, 
repeatable, cost effective and environment 
friendly. This can be achieved through the use of 
new technologies such as mass spectroscopy, X-
Ray diffraction, nuclear magnetic resonance, 
hyperspectral spectroscopy etc. 
 

2. HYPERSPECTRAL REMOTE SENSING 
OF SOIL 

 

Hyperspectral sensors are instruments that 
acquire reflectance in several, narrow, 
contiguous spectral bands in the visible, near 
infrared (NIR), mid infrared (MIR) and thermal 
infrared (TIR) regions of the electromagnetic 

radiation (EMR). Laboratory and field studies 
have revealed that certain soil characteristics 
exhibit characteristic absorption band, which 
could be used for their identification. For 
instance, soil water exhibit weaker absorption 
bands at 970 nm, 1200 nm and 1770 nm and 
prominent absorption bands at 1400 nm and 
1900 nm. Similarly, gypsum and montmorillonite 
exhibit absorption bands at 1800 nm and 2300 
nm, and between 520 nm and 1000 nm, 
respectively [4]. Most of the currently operating 
optical sensors have coarse spectral resolution 
on the order of 50 to 200 nm. As a result, such 
measurements are not adequate to resolve 
subtle variations in soil units arising due to 
variation in chemical composition. This has led to 
the development of high spectral resolution 
spectrometers capable of providing several 
spectral bands of typically 1 to 5 nm bandwidths. 
Hyperspectral remote sensing in large 
continuous narrow wavebands provides 
significant advancement in understanding the 
subtle changes in biochemical and biophysical 
properties of the crop plants and their different 
physiological processes, which otherwise are 
indistinct in multispectral remote sensing [5]. 
Hyperspectral remote sensing techniques have 
been developed from a laboratory-based near 
infrared spectroscopy (NIRS) technique [6]. The 
narrow sensitive band range (10 nm or less) 
makes it possible to detect subtle variations in 
the reflectance spectra, which are caused by 
differences in biochemical composition and 
physiology of vegetation [7,8]. In recent years, 
researchers have extended the technique of 
reflectance spectroscopy to measure 
biochemical parameters by field spectro-
radiometer, airborne and space borne sensors, 
trying to explore the variation in chemical 
composition in a spatial context [8,9, 10]. The 
potential of hyperspectral spectroscopy has been 
recognized by soil scientists since a few decades 
[11,12].  



 
 
 
 

Goswami et al.; IJPSS, 32(7): 14-25, 2020; Article no.IJPSS.57229 
 
 

 
16 

 

Hyperspectral spectroscopy can be divided into 
three distinguished types of measurements for 
soils viz. laboratory measurements, proximal 
sensing measurements and remote sensing 
measurements. The two latter techniques are 
able to collect spectral data in-situ and are 
therefore usually exploited to map soil properties 
[13]. Many authors reported the development of 
spectral sensors mounted on tractors [14,15]. 
These systems are generally used in precision 
agriculture to manage the quantity of nutrient 
inputs into soils [16]. Proximal sensing may also 
include hand-held measurements, which is used 
as a fast tool to monitor soil properties in-situ [17, 
18]. Ben-Door et al. [19] presented a 
hyprspectral reflectance device able to collect in-
situ 3D spectral data through an entire soil 
profile, allowing a rapid and objective soil 
classification. Remote sensing of soil properties 
has also been attempted using aerial 
photographs [20], multispectral [21] and 
hyperspectral images (imaging spectroscopy) 
[22]. Imaging spectroscopy differs from 
multispectral imaging in its contiguous number of 
wavebands, enabling precise recording of the 
spectrum and a detailed analysis of spectral 
properties of the soil surface. However, the 
transfer of relationships established at the 
laboratory level up to higher scales poses 
several problems associated with possible 
factors of confusion, such as (i) changes in soil 
roughness, moisture, illumination and view 
conditions; (ii) sensor characteristics like spectral 
and spatial resolution, radiometric calibration 
which may also change relationships between 
measured reflectance and actual soil 
characteristics, and (iii) possible atmospheric 
effects.  
 
Reflection spectra have been used for many 
years as one of the source of information about 
variation in earth surface composition. A wide 
range of information can be obtained from 
natural and chemical properties of soil [23]. This 
is mainly based on specific absorption of 
spectrally active groups known as chromophores 
such as Fe, OH- in water and minerals, CO3

2-, 
Al

2+
, Mg

2+
, SO4

2- 
in minerals and other organic 

matters.  

 
3. SPECTRAL SIGNATURE OF SOIL 
 
The spectral reflectance of soil varies with a 
range of chemical and physical properties which 
facilitates discrimination of different soils [13,24]. 
The most important characteristics of a soil 
influencing properties are: Moisture (inversely 

proportional to reflectance; wet soils appear 
darker than dry soils), organic matter (inversely 
proportional to reflectance; increasing organic 
matter content gives darker soils), texture (sandy 
soils are more reflective than clay soils), surface 
roughness (inversely proportional to reflectance; 
decrease in surface roughness slightly increases 
reflection), iron content (increase in iron oxide 
changes soil colour towards brick-red resulting in 
increased reflection in the red and a decreased 
reflection in green region) [22,24,25]. 
 

The soil properties influencing the spectral 
reflectance are known as chromophores. Soil 
chromophores may be chemical chromophores 
or physical chromophores based on their nature 
of influence on the soil spectrum [26]. The 
incoming EMR is absorbed at discrete 
wavebands by the chemical chromophores. On 
the contrary, physical chromophores influence 
the entire spectra of EMR [27]. Therefore, sharp 
reflection and/ or absorption peaks might be 
attributed to presence or absence of chemical 
chromophores. Physical chromophores influence 
the shape of the reflectance spectra. Soil 
moisture, organic matter, clay minerals and iron 
oxides are dominant chemical chromophores 
influencing reflection and absorption peaks of soil 
spectra. On the other hand, sand, silt, clay and 
geometry are dominant physical chromophores 
influencing the shape of reflectance spectra [28].     
 

Spectral reflectance decreases with increase in 
gravimetric soil moisture content (Fig. 1) [28]. 
This is attributed to presence of O-H bond which 
is the strongest absorber of EMR. For stretched 
O-H bond, absorption peak use to occur in 3106 
nm, for H-O-H bending, absorption peak occurs 
in 6079 nm and for asymmetric O-H stretching, 
absorption peak occurs in 2903 nm spectral band 
in the EM spectra [29]. Again, clear absorption 
peak occurs in 1400 nm due to presence of O-H 
overtone stretching. Absorption peak in the 1900 
nm is due to combination of H-O-H bending and 
O-H stretching [30]. On the other hand, 
absorption peak in 2200 to 2300 nm occurs due 
to combined influence of metal-OH bending and 
O-H stretching [29]. Soil moisture is the most 
dominant chromophore which may influence all 
other chromophores in the reflectance spectra of 
soil [31]. 
 

Soil Organic Matter (SOM) and its intermediate 
decomposition products significantly influence 
the spectral reflectance of mineral soils [32]. 
SOM has inverse relation with spectral 
reflectance of soil, removal of SOM results in 
increase in spectral reflectance of soil (Fig. 2) 
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[33]. Absorption peaks occurring due to presence 
of SOM and its intermediate decomposition 
products are weak which may not able to 
distinguish with naked eye [34]. However, 
influence of SOM on the overall spectral 
signature of soil is distinct in the visible region of 
electromagnetic spectra [23]. 
 
Clay minerals are also found to have significant 
influence on the spectral signature of soil [35]. 
The OH

 
functional group use to be associated 

with the 2:1 type octahedral sheets or with the 
water molecules adsorbed to the mineral surface 
(lattice water). Therefore, all the absorption 
characteristics shown by OH group are shown  
by the clay minerals in the reflectance spectra 
[36]. Again, iron content also significantly 
influence the spectral reflectance of soil in the 
form of Fe2+ and Fe3+ oxides or its impurities  
[37]. Spectral reflectance of dominant clay 
minerals has been studied adequately by Clark 
[30] (Fig. 3). 

 
 

 
Fig. 1. Spectral reflectance of soil with different levels of moisture [28] 

 
 

 
Fig. 2. Spectral reflectance of soil with different levels of organic carbon [33] 
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Among the physical chromophores, particle size 
of soil is the most dominant factor influencing the 
spectral signature of soil. Spectral reflectance of 
soil increases exponentially with the decrease in 
particle size, particularly when particle size is 
smaller than 0.4 mm diameter (Fig. 4) [38]. Soil 
surface becomes smoother as the particle size 
decreases and thus they reflect more part of the 
incident EMR. On the contrary, increase in 
particle size increases the surface roughness, 
thus major portion of the incident EMR gets 
trapped in the spaces between the soil particles 
resulting in lower reflectance [23,39]. 
 

Stoner and Baumgardner [25] identified five 
characteristic soil spectral reflectance curves 
which they considered representative of the 
diversity of soil reflectance found in wide ranges 
of naturally occurring surface soils. These curve 
forms were identified by curve shape and the 
presence or absence of absorption features 
representing distinctive organic matter and iron 
content, as well as texture. Das et al. [28] studied 
the spectral signature of major soils of India and 
it was found that the spectral reflectance varied 
across soil types. Vertisols of Karnataka   
showed lower soil reflectance in the entire

 

 
Fig. 3. Spectral signature of dominant clay minerals [30] 

 
 

 
Fig. 4. Spectral reflectance from different particle size [38] 
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Fig. 5. Spectral signature of major soil orders of India [28] 

 
electromagnetic spectra compared to the 
Inceptisols of Uttar Pradesh (soils of Agra region) 
and Aridisols of Rajasthan (soils of Jodhpur 
region). This was due to darker colour of 
Vertisols in comparison to Inceptisols of Agra 
region and Aridisols of Jodhpur region. On the 
other hand, deep red Alfisols of lateritic origin 
showed intermediate spectral reflectance values 
(Fig. 5). 
 
The analysis of mineralogy with spectral proximal 
sensing has made great progress over the years. 
Nowadays, several institutes provide spectral 
libraries with comprehensive collections of a wide 
variety of materials. For example, the ASTER 
spectral library version 2.0, which is a collection 
of contributions from the Jet Propulsion 
Laboratory, Johns Hopkins University and the 
United States Geological Survey, is a widely 
used spectral library which contains over 2400 
spectra of a wide variety of minerals, rocks, 
vegetation and manmade materials covering the 
wavelength range of 400 to 1540 nm [40]. Partial 
Least Square Regression (PLSR) can be used to 
match collected spectral samples to those in the 
spectral libraries [41].  
 
Global spectral library with 23631 soils 
representing 92 countries have been developed 
in which only 67 soils were from India [42]. There 
is no reported study on spectral signatures of soil 
and its correlation with soil properties for the 
North Eastern hill region of India. With a large 
variation in soil properties across our country, 

there is a requirement for developing more 
extensive spectral libraries representing specific 
regions and there are initiatives to expand 
existing spectral libraries into a national soil 
spectral library [43].  
 
Reflectance data have been successfully used 
for study of soil properties such as moisture, soil 
organic carbon (SOC), inorganic carbon, total 
nitrogen (N), cation exchange capacity (CEC), 
pH, potassium (K), magnesium (Mg), calcium 
(Ca),   zinc (Zn), iron (Fe) and manganese (Mn) 
with various levels of accuracies [44]. Since 
spectral signature of soils reflect a set of soil 
properties like organic matter content and some 
chemical and biological properties, some 
researchers have hypothesized that spectral 
signature could probably be used to discriminate 
clusters of soil samples differing in their quality. 
 

4. MULTIVARIATE ANALYSIS FOR 
PREDICTION OF SOIL PROPERTIES 

 
Hyperspectral data being of large volume, 
overlapping of weak overtones with fundamental 
vibrational band makes it difficult for direct 
interpretation. Therefore, a number of calibration 
techniques are applied for establishing 
relationship between spectra and soil properties. 
Multiple Linear Regression (MLR), Principal 
Component Regression (PCR) and PLSR are 
most commonly used techniques [45].  A number 
of indicators are used for validation of prediction 
of soil properties such as coefficient of 
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determination (R2), Root Mean Square Error 
(RMSE), Ratio of Performance to Deviation 
(RPD), Ratio of Performance to Inter Quartile 
(RPIQ) and Bias [46].  
 
For quantitative prediction of chemical soil 
properties such as pH, PCR has been reported 
to be best multivariate method [47], followed by 
PLSR [48] and Stepwise Multiple Linear 
Regression (SMLR) [49]. Again, PLSR has been 
found to be most suitable multivariate method for 
quantitative prediction of soil carbon [50,51] 
followed by PCR [52]. Similarly, for quantitative 
prediction of total soil nitrogen, PLSR has been 
observed to be the most suitable multivariate 
method [50]. However, PCR has been found to 
be most suitable for quantitative prediction of 
mineralized soil nitrogen [52]. On the contrary, 
Neural Network (NN) was fond to be most 
suitable quantitative prediction of available soil 
phosphorus and available potassium [53]. 
However, PCR is most suitable for quantitative 
prediction of exchangeable potassium [52]. 
MARS [35] and PCR [52] have been found to be 
most suitable multivariate method for quantitative 
prediction of CEC, Ca

2+
 and Mg

2+
. For prediction 

of micronutrients such as Cu and Fe, modified 
PLSR has been reported as most suitable for 
quantitative prediction [54]. On the other hand, 
PCR was found to be most suitable multivariate 
method for quantitative prediction of Zn and Mn.  
 
For quantitative prediction of physical soil 
properties such as sand (%), PCR has been 
reported to be best multivariate method [52] 
followed by Multivariate Adaptive Regression 
Spline (MARS) [35] and modified PLSR [54]. 
Similarly, PCR has been reported to be best 
multivariate method for quantitative prediction of 
silt [52] followed by modified PLSR [54] and 
MARS [35]. On the other hand, modified PLSR 
has been reported to be the best multivariate 
method for quantitative prediction of clay [54] 
followed by MARS [35] and PCR [47,52]. Again, 
PCR and SMLR have been found to be most 
suitable multivariate method for quantitative 
prediction of moisture content of soil [47,49]. 
 
Soil pH has been predicted with R2 value of 
more than 0.8 at local level [55,56] and at 
regional level [57,58]. However, at global level, 
pH has been predicted with R2 value of more 
than 0.7 [35]. On the other hand, this has been 
observed that pH has been predicted with R2 

value of less than 0.5 at local level [59,60] and 
at regional level [61]. SOC has been predicted 
with R2 value of more than 0.9 at local level 

[62,63] and regional level [62,64,65,66,67,68, 
69,70]. However, at global level SOC has been 
predicted with R2 value of more than 0.8 [71]. 
On the contrary, R

2 
value of less than 0.5 has 

been reported for predicted SOC at local level 
[60]. Macro nutrients of soil such as N, P, K, Na, 
Ca, Mg and micro nutrients such as Fe, Mn, Zn, 
Cu, B and Mo has been found to be predicted 
with R

2 
value of less than 0.5 [72,73].    

 
Soil physical properties such as sand content 
was also predicted with R2 value of more than 
0.8 at local level [59,60], R2 value of more than 
0.9 at regional level [57] and R2 value of more 
than 0.7 at global level [35]. On the contrary, R2 
value of less than 0.5 was predicted at the local 
level [60] as well as at the regional level [61,69].  
Silt content with R2 value of more than 0.7 was 
predicted at the local level [45,74] as well as at 
the regional level [57]. At the global level, R2 
value of more than 0.6 was predicted for silt [35]. 
On the contrary, R2 value of less than 0.3 was 
predicted at the local level [59,60] and R2 value 
of less than 0.4 was predicted at the regional 
level [61,69]. On the other hand, clay content has 
been predicted with R2 value of more than 0.9 at 
the local level [59], more than 0.8 at the regional 
level [69,75] and R2 value of more than 0.7 at the 
global level [76]. On the contrary, R2 value of 
less than 0.3 was reported at the local level [73, 
77], while R2 value of less than 0.5 was reported 
at the regional level [78,79]. 
 

5. SPECTRAL INDICES FOR ESTIMATING 
SOIL PROPERTIES 

 
Although  a qualitative interpretation of 
hyperspectral spectra through visual analysis 
can be achieved [25], direct quantitative 
prediction of soil characteristics is  almost 
impossible because  soil  constituents  interact  
in  a  complex  way  to  produce  a  given  
spectrum.  Statistical models are usually used 
for quantification of the property of interest 
which is known as Chemometrics. Geladi [80] 
has reported the overview of the use of 
chemometrics in spectroscopy. The quantitative 
analysis of HRS data may be conducted in two 
ways, both requiring the implementation of 
multivariate statistics [81]. Firstly, clustering 
techniques can be used to discriminate  
samples or to detect changes in sample 
properties [82]. On the other hand, regression 
methods can be used for prediction of unknown 
properties using calibration  equations  which  
relate  spectral  information  to  sample  
properties  [52]. 
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An increasing number of studies emphasize the 
ability of hyperspectral spectroscopic analysis for 
quantitative prediction of soil physical, chemical 
and biological properties [43]. Most hyperspectral 
regression models are based on laboratory 
measurements under controlled conditions, 
which avoid disturbing factors characterizing field 
measurements like soil moisture content, soil 
roughness and vegetation cover [17]. Some of 
spectral indices used for estimating soil 
properties using spectral reflectance are Simple 
Ratio Index (SRI), Relative Vigour Index (RVI), 
Normalized Difference Vegetation Index (NDVI), 
Renormalized Difference Vegetation Index 
(RNDVI), Modified Simple Ratio Index (MSRI), 
Soil Adjusted Vegetation Index (SAVI), Modified 
Soil Adjusted Vegetation Index with self 
adjustment factor (MSAVI), Photochemical 
Reflectance Index (PRI), Normalized 
Phaeophytinization Index (NPI), Green Ratio 
Index (GRI), Water Index (WI), Structure 
Independent Pigment Index (SIPI), Short Wave 
infrared Water Index (SWWI), Normalized 
Difference Water Index (NDWI), Triangular 
Vegetation Index (TVI), Modified Triangular 
Vegetation Index (MTVI), Simple Ratio Water 
Index (SRWI), Modified Chlorophyll Absorption in 
Reflectance Index (MCARI), Transformed Soil 
Adjusted Vegetation Index (TSAVI), Optimized 
Soil Adjusted Vegetation Index (OSAVI), 
Transformed Chlorophyll Absorption in 
Reflectance Index (TCARI), Cellulose Adsorption 
Index (CAI) and Shortwave Infrared Water Stress 
Index (SIWSI) [83]. 
   
6. CONCLUSION 
 
Assessment of soil physical and chemical 
properties is important for understanding the 
spatial variability of soil. Traditionally, soil 
samples are collected and analyzed in the 
laboratory for the soil fertility properties for 
assessment of spatial variability. Spectral 
signatures of soil reflect variation in some of the 
important soil properties viz. moisture content, 
organic carbon content, particle size and type of 
clay minerals. Hyperspectral spectroscopy has 
been found to be useful in estimation of soil 
properties with moderate accuracy level. Some 
authors have reported encouraging results for 
prediction of soil physical (sand, silt & clay) and 
chemical properties (pH & OC). On the contrary, 
many authors have reported contradictory results 
on prediction of soil properties using the 
multivariate analysis techniques. However, the 
regression models will be useful for researchers 
who are working on alternate methods for 

estimation of soil properties. Spectral indices are 
found to predict soil properties with low level of 
confidence. Therefore, there is a scope for 
development of spectral indices capable of 
assessing and predicting soil properties for major 
soil types. 
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