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ABSTRACT 

Modeling the force-velocity dependence of a muscle-tendon unit has been one of the most interesting objectives in the 
field of muscle mechanics. The so-called Hill’s equation [1,2] is widely used to describe the force-velocity relationship 
of muscle fibers. Hill’s equation was based on the laboratory measurements of muscle fibers and its application to the 
practical measurements in muscle mechanics has been problematic. Therefore, the purpose of this study was to develop 
a new explicit calculation method to determine the force-velocity relationship, and test its function in experimental 
measurements. The model was based on the motion analysis of arm movements. Experiments on forearm rotations and 
whole arm rotations were performed downwards and upwards at maximum velocity. According to the present theory the 
movement proceeds as follows: start of motion, movement proceeds at constant maximum rotational moment (Hy- 
pothesis 1), movement proceeds at constant maximum power (Hypothesis 2), and stopping of motion. Theoretically 
derived equation, in which the motion proceeds at constant maximum power, fitted well the experimentally measured 
results. The constant maximum rotational moment hypothesis did not seem to fit the measured results and therefore a 
new equation which would better fit the measured results is needed for this hypothesis. 
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1. Introduction 

Modeling the force-velocity relationship of muscle-tendon 
unit involves many different factors. In muscle mecha- 
nics force-velocity relationship of skeletal muscle is of- 
ten presented by so-called Hill’s equation (F + a)(v + b) 
= b(F0 + a), where F is the maximum force within mus-
cle contraction, a and b are constants, F0 the isometric 
force of muscle or the constant maximum force gener-
ated by muscle with zero velocity and v is velocity, 
(Figure 1) [1,2]. This equation was based on the labora-
tory measurements in which force (F) of the activated 
muscle lifted different loads (F = mg) and speed of the 
load (v) was then measured. In Hill’s equation F is force, 
a is constants force, v is velocity, b is constant velocity 
and F0 is constant force. In the equation the vectors of 
forces and velocities have the same direction and there-
fore Hill’s equation can be presented in a scalar form. 
The left side of Hill’s equation is the product of force and 
velocity and that is power. As the right side of the equa-
tion is constant it can be seen that Hill’s equation is a 
constant power model. Hill’s force-velocity relationship 
is one of the most essential equations of muscle mechan-
ics and it has often been principle object in biomechani-
cal studies for about 50 years, e.g. [3-6]. Force measured 

from skeletal muscle during maximum tension depends 
on several internal and external factors. Internal factors 
are e.g. anatomical structure of muscle (cross sectional 
area, pennation etc.), fiber type distribution (fast and 
slow twitch muscle fibers have different force-velocity 
equations), condition of the muscle (fatigue, training) and 
muscle length. External factors are e.g. contraction type 
(isometric, concentric and eccentric) and contraction ve-
locity (rate of change of muscle length). Good reviews of 
the above mentioned factors have been presented, e.g. 
[4,7,8]. Force (F) creates a moment about the joint which 
is moment arm multiplied by force (M = r × F). Length 
of muscle’s moment arm depends on joint angle and it 
changes as the rotation movement proceeds about the 
joint axis. The combined effect of the forces of several 
different muscles produces the rotation movement about 
the joint axis. 

Due to all the above mentioned factors it is difficult to 
determine the force production [9,10], and also to deter-
mine the torque about the joint. The purpose of this study 
was to develop a new explicit calculation method to de-
termine the force-velocity relationship and test its func-
tion in experimental measurements. This method is based 
on the assumption that in muscle mechanics there exists a 
constant maximum power which the muscle is able to 
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Figure 1. Hill’s equation
 
(F + a)(v + b) = b(F0 + a) where F0  

is so-called isometric force or force with zero velocity, v0 is 
the highest possible velocity, a and b are constant force and 
constant velocity. In rotational movement torque M corre-
sponds to force F and angular velocity φ corresponds to 
velocity v. 
 
generate within a certain range of velocity. The principle 
of constant maximum power is the same as in Hill’s 
equation except that the constant maximum power in the 
present study is a characteristic of whole muscle group 
instead of separate muscle fibers as in the Hill’s equation. 
This study continues the development of the earlier find-
ings [11-13].  

2. Methods 

The experiments in the present study consisted of three 
different maximum velocity arm movements: 1) forearm 
rotation downwards, 2) whole arm rotation downwards 
and 3) upwards. The selection of these movements was 
based on the earlier findings of Rahikainen and Luhtanen 
[11] where so called “constant power theory” seemed to 
work at the last phase of the arm push in shot put. In or- 
der to study this finding more extensively it was reason-
able to choose a simple procedure as represented by arm 
rotations in the present study. The photographs of arm 
movements in this study were generated by a special mo- 
tion camera system [14,15] which represents the move- 
ment as a series of object images. The paths of the mark 
lights attached to the moving object can be seen as bro- 
ken light-lines. The principle of the method is to photo- 
graph the moving object through a rotating disc which 
consists of one transparent opening and nine filter open-
ings serving as the shutter apertures. As the exposure 
disc rotates in front of the camera lens (film camera Ca- 
non T70) and the camera aperture is open, the disc serves 
as the shutter. This way several overlapping exposures 
are generated on the same frame. The transparent open- 
ing generates images of the moving object, and the filter 
openings generate the light-lines indicating the paths of 
mark lights attached to the moving object (Figure 2). In 
this study the speed of rotation of the exposure disc was 
300 rotations per minute, exposing five (300/60) object 
images per second and giving the time interval of 20 ms  

 

Figure 2. Forearm rotation downwards with maximum 
force. Angle of rotation φ and its corresponding time T (ms) 
are presented on the subject image. 
 
for nine light-lines between consecutive object images 
(for more detail, see [14,15]). Figure 2 represents a fore- 
arm rotation downwards. As seen in the figure the radius 
of the rotation circle is not exactly the same as the radius 
of forearm rotation. This is because of a slight motion of 
the elbow joint. Actually the radius of forearm rotation is 
slightly larger than the radius of circle on the figure and 
it can be measured from the forearm image before the 
start of the rotation movement. Angular velocity mea- 
surements are calculated with the formula  

S R T                (1) 

in which the length of forearm is the radius of rotation R 
and the distance measured between two successive 
measured points on the path of light-lines is the distance 
increment ΔS. 

2.1. Measurement of Rotation Arc 

For convenience the arc ΔS1 was measured as a straight 
line ΔS2 (Figure 3) and the error between these two va- 
lues was estimated. The arc ΔS1 can be calculated from 
the straight line ΔS2 from the formula: 
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Formula derivation from the right-angled triangle in 
Figure 3. 
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Figure 3. Measurement of the rotation arc. φ = angle of 
rotation, R = length of forearm, arc ΔS1 = distance the mark 
light travels during the time interval Δt and ΔS2 = the arc 
ΔS1 measured as a straight line. 
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The maximum value measured from Figure 2 (corre- 
sponding time 140 ms) is ΔS/R = ΔS2/R = 0.356. Substi-
tuting this value in the formula above (7) the arc of rota-
tion is obtained as ratio form ΔS1/R = 0.358. It can be 
seen that ΔS2 fits with adequate accuracy to the distance 
ΔS1. 

2.2. Progress of Research 

The present study continues the earlier study [11] and it 
is a new round in the diagram of Figure 4 presenting the 
progress of research (testing the hypotheses): 1) Equation 
of arm movement was derived and test predictions were 
made. 2) Experiments were performed in arm rotations. 3) 
Equation of arm rotation was fitted to the experimental 
results and their compatibility was observed. 4) If the 
present equation of motion did not fit at all the measuring 
results, the hypothesis would be disproved. If the present 
equation of motion fitted the measuring results in some 
definite accuracy, the hypothesis would receive confir- 
mation. 5) In the future, by making additional experiment 
(a new round in the diagram) the hypothesis will receive 
more confirmation. 

2.3. Arm Rotation 

Because the muscle system is able to transfer only a cer-
tain quantity of chemical energy during the time of con-
traction, it is obvious that arm rotation must have maxi-
mum power that cannot be exceeded. It can also be as-
sumed that the maximum power acts within a certain 
range of velocity and it is a constant maximum power. At 
the beginning of the movement angular velocity is natu-
rally zero and it takes some time to generate force. After 
the start of the movement it is possible that a maximum 
muscle force takes action and within rotational motion 
maximum rotational moment acts as well. The constant  

 

Figure 4. Diagram of the progress of testing the hypotheses 
of arm rotations. 
 
maximum power acts within a certain range of velocity 
which cannot be at the beginning of the rotational move- 
ment because power is the product of moment and angu- 
lar velocity. Therefore, a constant power “theory” is pos- 
sible only when the velocity is high enough. As the ve- 
locity increases the motion reaches the point where the 
maximum power takes action and acting rotational mo- 
ment is less than the maximum moment. This way power 
remains constant as the angular velocity increases and 
moment decreases. 

2.4. Research Hypotheses 

According to the present theory and above mentioned 
facts the movement proceeds as follows: 1) start of mo- 
tion, 2) movement proceeds at constant maximum rota- 
tional moment during the first part of the movement 
[Hypothesis 1], 3) movement proceeds at constant maxi- 
mum muscular power during the second part of the 
movement [Hypothesis 2], 4) stopping of motion. In or- 
der to test the research hypotheses, the following ex-
periments were conducted: forearm rotation downwards 
at maximum velocity (1), whole arm rotation downwards 
at maximum velocity (2), whole arm rotation upwards at 
maximum velocity (3). The maximum power hypothesis 
was tested so that the theoretical angular velocity-time 
values from Equation (15) were fitted into the measured 
angular velocity-time curves of arm rotations. It was as-
sumed that if the measured angular velocity-time values 
matched the theoretical values within a certain velocity 
range then the Hypothesis 2 would be fulfilled. The 
maximum rotational moment hypothesis was tested by 
Equation (8). 

2.5. A Model of Arm Rotation 

It was assumed (hypothesis) that in muscle mechanics 
there exists the maximum power (P) which the muscle is 
able to generate within a certain range of velocity. The 
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Model of arm rotation was constructed according to 
Newton’s II law which was applied to rotational motion 
where moment of inertia multiplied by angular accelera-
tion equals rotational moment. Rotational moment equals 
moment generated by muscle force subtracted moment 
generated by inner friction of muscle. The effect of gra- 
vitational force is minor and it is added to the motion 
mechanics afterwards in Section 2.6. The model of arm 
rotation is the equation of motion: 

d

d

P
I C

T

 


 
 


             (8) 

where I is moment of inertia in arm rotation,   is an-
gular velocity, P is power generated by arm muscles, T is 
time, P/  is moment generated by muscle force, C  is 
moment generated by inner friction of muscle and C is 
constant coefficient of friction. 

The mass distribution of the subject’s arm sectors dif-
fered from the average values in subject mass tables. 
Therefore the mass distribution of the arm sectors were 
defined by sinking the arm sectors into water, and 
weighing the over flowed water. The masses of the arm 
sectors were calculated by means of water volume and 
arm sector density (V). The length of subject’s whole 
arm was 0.64 m and the arm sectors, hand, forearm 1, 
forearm 2, upper arm 1, upper arm 2 were 0.128 m each. 
Arm sector densities were 1.16, 1.13, 1.07 for hand, 
forearm and upper arm, respectively [6]. Moment of in-
ertia for the forearm rotation was I = 0.11 kg·m2 and for 
the whole arm rotation I = 0.52 kg·m2. 

Hypothesis 1 implies that movement proceeds at a 
constant maximum rotational moment. In that case the 
moment generated by muscle force P   in Equation 8 is 
a constant maximum moment. Hypothesis 2 implies that 
movement proceeds at a constant maximum muscular 
power. In that case the power P in Equation (8) is a con-
stant maximum power. In order to determine the validity 
of Hypothesis 2, Equation (8) was solved for angular 
velocity-time function and this equation was employed 
for validity determination: 

Equation of power 2d
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generated by arm muscles and 2C  is power consumed 
by friction.  
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2.6. Effect of Gravitational Force on the 
Movement 

The moment which is induced by gravity r mg  
was omitted from the motion model. The power gene- 
rated by this moment is  r mg   , where mg is 
gravitational force of arm segments, r is distance of the 
center of gravity of segments from the rotation axis and 
  angular velocity of arm rotation. The theoretical an-
gular velocity function, Equation (15), and the measured 
angular velocity function coincide within so narrow ve-
locity range that the power induced by gravity can be 
calculated as a constant factor. In this case it is included 
in the power P as follows: P of rotation downwards = 
power generated by muscular force + power generated by 
gravitational force and P of rotation upwards: P = power 
generated by muscular force-power generated by gravita-
tional force. 

2.7. Finding the Matched Range of Measured 
and Theoretical Angular Velocity Functions 

There are two unknown variables in Equation (15), pow-
er P and kinetic friction coefficient C. In order to deter-
mine these two unknown variables, two equations were 
required. These two equations were obtained from the 
hypothesis according to which the movement proceeds at 
constant maximum power within certain velocity range. 
By substituting two angular velocity-time value pairs 
from the measured angular velocity-time curve in Equa-
tion (15) the two required equations were obtained. The 
zero point of time (Figure 5) is at the intersection point 
of the time-axis and the broken-line curve and in order to 
find that some iteration was done. From these two equa-
tions P and C could be solved. Then the constant maxi-
mum power hypothesis was tested by comparing the 
calculated theoretical values from Equation (15) with the 
values of measured angular velocity-time curve. 

3. Results 

0

dT       (11) In Figure 5 the line (A-E) is connecting the experimental 
data points of Figure 2. Figure 6 shows the whole arm  
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kg·m2 

kg·m2/s 

 

Figure 5. The measured angular velocities from forearm 
rotation downwards (points on the curve A-E) and the 
theoretical angular velocity values calculated from Equa-
tion 15 (broken line). The zero point of time for the theo-
retical angular velocity curve is at the intersection of the 
time-axis and the broken-line curve (the same time scaling 
is same for both curves). 
 

 
(a) 

 
(b) 

Figure 6. Whole arm rotation downwards (a) and upwards 
(b). Time of rotation is seen with the increment of 20 ms. 
 
rotations upwards and downwards. In Figures 5 and 7 
the solid line is the curve fitting to the points represent- 
ing the technique to filter small digitizing errors in tradi- 
tional motion analysis. This way the complicated analy- 
sis of the series of the object images in the present study 
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(b) 

Figure 7. The measured angular velocities (points on the 
curve fitting A-E) from the whole arm rotation downwards 
(a) and upwards (b) and the theoretical angular velocity 
values calculated from Equation 15 (broken lines). The zero 
point of time for the theoretical angular velocity curve is at 
the intersection of the time-axis and the broken-line curve. 
 
could be facilitated without losing a sufficient accuracy. 

Hypothesis 1 states that the rotational movement pro-
ceeds at a constant maximum rotational moment within a 
certain range of velocity. This statement implies that ro-
tational moment is about constant or P   is constant. 
By observing Figures 5 and 7 it can be seen that move-
ment proceeds at constant acceleration or d dT  is 
constant approximately between the points A-B on the 
velocity-time curve. The kinetic friction C  is not con-
stant. By substituting these terms in Equation (8)  

d

d

P
I C

T

 


 
 


 

it can be seen that the left side of the equation is constant 
and the right side of the equation is not constant. There-
fore, we can conclude, that Hypothesis 1 is not fulfilled. 

The measured values of the forearm rotation down-
wards are presented in Table 1. Angular velocities of the 
forearm rotation are shown in Figure 5 as points on the  
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Table 1. Measured values of the forearm rotation down-
wards. Angular velocity is calculated with the Equation (1) 
and the angular acceleration according to Figure 7. A-B 
and C-D represent the estimated phases where the move-
ment proceeds at constant acceleration and constant power, 
respectively. 

T (ms)  Δφ(rad) ΣΔφ(rad) ( )rad s   2rad s

20  0.055 0.06 2.75 114 

40 A 0.110 0.17 5.50 155 

60  0.170 0.35 8.52 155 

80 B 0.231 0.59 11.54 155 

 C     

100  0.291 0.89 14.56 128 

120  0.319 1.22 15.93 72.5 

140 D 0.329 1.56 16.48 12 

160  0.319 1.89 15.93 -56 

 
curve A-E. The theoretical angular velocity function with 
maximum power hypothesis (Equation 15) was fitted into 
the curve of the measured angular velocity-time values. 
Moment of inertia of forearm rotation was calculated I = 
0.11 kg·m2 (see 2.5). The values of friction coefficient C 
and power and friction coefficient ratio P/C were ob-
tained within the curve fitting, C = 2.38 kg·m/s2 and P/C 
=285 1/s2. In Figure 5 the movement proceeds at a con-
stant acceleration between the phases A and B (~ 40 - 80 
ms) until the liquid friction begins to influence and ac-
celeration decreases between B-C. According to the Hy-
pothesis 2 the movement proceeds at a constant power 
between C-D which is followed by stopping of the 
movement (D-E). The theoretical angular velocity curve 
(broken line) coincides with the measured angular veloc-
ity curve within section C-D. Therefore, we conclude 
that Hypothesis 2 is fulfilled within this range of velo- 
city. 

Figure 7 represents the curves of the measured points 
of angular velocity-time values from the whole arm ro- 
tations downwards and upwards (Figure 6). The theo- 
retical angular velocity functions with maximum power 
hypothesis (Equation (15)) were fitted into the measured 
point curves. Moment of inertia of forearm rotation was 
calculated I = 0.52 kg·m2 (see 2.5). The values of friction 
coefficient C and power and friction coefficient ratio P/C 
were obtained within the curve fitting, whole arm rota-
tion downwards C = 3.0 kg·m/s2 , P/C =360 1/s2 and 
whole arm rotation upwards C = 3.0 kg·m/s2, P/C =250 
1/s2. The movement follows the hypothesized movement 
pattern described in the forearm rotation above. The 
theoretical angular velocity curves (broken lines) coin-
cide with the measured angular velocity curves in section 
C-D (~ 150 - 190 ms and 90 - 150 ms in downward and 
upward rotation, respectively, Figure 7). 

Validity and Accuracy of Results 

In order to confirm the accuracy of results, power P was 
calculated by comparing two independent calculation 
methods. Equation (9) 

2 2d d

d d
I P C P I C

T T

        
        (16) 

yields one power value (P1) and the other one (P2) comes 
from the curve fitting used in Figures 5 and 7 (P/C). 

In forearm rotation downwards the angular accelera- 
tion at point T = 0.10 s,   = 14.5 rad/s was calculated 
by using the tangent of the angular velocity curve (Fig- 
ure 8). The tangent point can be found because the tan- 
gent has only one point on the curve, otherwise there are 
two intersection points. The value of angular acceleration 
in Figure 8 was calculated according to 

d

dT


 = 14.5/0.12 1/s2 = 121 1/s2. 

This value of angular velocity derivative can also be 
calculated using Equation (15). The time and angular 
velocity of this equation corresponding to the measured 
angular velocity curve time 0.10 s and velocity 14.5 rad/s 
was calculated with Equation (13). Substitution of veloc-
ity 14.5 rad/s into Equation (13) gives time 0.031 s. The 
derivative of Equation (15) 
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Substituting in this equation T = 0.031 s, I = 0.11 
kg·m2, C = 2.38 kg·m2/s and P = 693 W, the value of 
angular acceleration of 112 1/s2 was obtained. Moment 
arm of gravitational force is so short at forearm rotation 
that the power generation of gravitational force has no 
significance. In whole arm rotation downwards and 
whole arm rotation upwards the effect of gravitational 
force is within power P. The accuracy of results is pre-
sented in Table 2. 

4. Conclusions 

Hypothesis 1: Movement proceeds at a constant maximal 
rotational moment. Measurements of the rotation move- 
ments show that movement proceeds at a constant angu- 
lar acceleration between A-B. Therefore, it can be con- 
cluded that the torque accelerating the movement or the 
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Table 2. Determination of accuracy of the results. The accuracy was obtained as a difference between the power values P1 

(from Equation (16)) and P2 (from the curve fitting in Figures 5 and 7). 

 Forearm rotation Whole arm rotation 

 Down (Figure 4) Down (Figure 6)  Up (Figure 6) 

Time (T) 0.100 s 0.160 s 0.114 s 

Angular velocity    14.5 rad/s 13.3 rad/s 11 rad/s 

Angular acceleration 
d

dT

 
 
 


 14.5 / 0.12 1/s2 13 / 0.16 1/s2 11 / 0.17 1/s2 

Moment of inertia (I) 0.11 kg·m2 0.52 kg·m2 0.52 kg·m2 

Power into acceleration 
d

d
I

T

 
 
 

  193 W 562 W 370 W 

Coefficient of friction (C)  2.38 kg·m2/s 3.0 kg·m2/s 3.0 kg·m2/s 

Power into friction  2C  500 W 531 W 363 W 

Muscle Power (P1) 693 W 1093 W 733 W 

Power/Coefficient of friction (P/C) 285 1/s2 360 1/s2 250 1/s2 

Muscle Power (P2) 678 W 1080 W 750 W 

Error 
 
1 2

1 2

100
0.5

P P

P P




 2.2% 1.2% 2.3% 

 

 

Figure 8. Calculation of angular acceleration at point (T = 
0.10 s,   = 14.5 rad/s), where the theoretical angular ve-

locity curve (broken line) coincides with the measured an- 
gular velocity curve (points) between C-D. 
 
left side of Equation (8) is constant. 
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Torque accelerating the movement is not the same as 
muscle force which is included in the term P/ . There- 
fore, we can conclude that Hypothesis 1 is not fulfilled. 
However, “movement proceeds at a constant accelera-
tion” is an interesting finding which should be studied 
more closely. In Equation (8) kinetic friction was as- 
sumed to be directly proportional to velocity between 
A-B. This is a third hypothesis included into this study, 
which is not necessarily true. It is possible that kinetic 

friction is constant at small velocities and at large veloci-
ties directly proportional to velocity. Then there is a con- 
stant torque value accelerating the movement between 
A-B. The constant acceleration of the velocity curve may 
be related to the evolution of the human beings. For ex-
ample the smooth acceleration may be essential for the 
accuracy of javelin throwing and targeting in fighting 
and hunting. As mentioned in [10] when modeling the 
control of the human limb motions, the final aim is to 
estimate the force production of individual muscles in-
volved. Therefore the constant acceleration theory may 
play important role in human movements. 

Hypothesis 2: movement proceeds at a constant maxi- 
mal muscle power. Since the matched range (C-D) of the 
theoretical and measured velocity curves of arm rotation 
was long enough, it can be clearly seen that the curves 
did not intersect each other. Therefore it can be inferred 
that the constant maximum power hypothesis is true be- 
tween C-D. In addition to the present study of three dif- 
ferent type of arm rotation experiments the model of 
constant maximum power was also fulfilled in the previ-
ous experiments of shot put [11]. The different arm 
movements used in these experiments helped to achieve 
a greater certainty for the functioning ability of the pre-
sent model. This model can be considered the most in-
teresting finding of the present study. 
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