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ABSTRACT 

We consider an oscillator with a random mass for which the particles of the surrounding medium adhere to the oscilla- 
tor for some random time after the collision (Brownian motion with adhesion). This is another form of a stochastic os- 
cillator, different from oscillator usually studied that is subject to a random force or having random frequency or ran-
dom damping. We calculated first two moments for different form of a random force, and studied different resonance 
phenomena (stochastic resonance, vibration resonance and “erratic” behavior) interposed between order and chaos. 
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1. Introduction 

The simplest, most general and the most widely used 
model in physics is the harmonic oscillator. This model 
has been applied everywhere, from quarks to cosmology. 
Moreover, a person who is worried by oscillations in the 
stock market can relax to classical music produced by the 
oscillations of string instruments. The ancient Greeks 
already had a general idea of oscillations and used them 
in musical instruments. Regarding practical applications, 
we note the Galilean discovery of the universality of the 
period for small oscillations, which was used in 1602 for 
measuring the human pulse. Many other applications 
have been found in the last 400 years. Our interest here is 
centered on the influence of noise on the harmonic 
oscillator [1]. 

All of Newtonian mechanics is encapsulated in the 
basic equation, 2 2= d d ,F m x t  where the force F ap- 
plied to a particle of mass m, situated at position x(t) at 
time t, causes the particle to accelerate. The goal of 
mechanics is to find x(t), the position of the particle at 
any future time, given its position and velocity at some 
initial time t0. 

The quintessential example of a force is the one-di- 
mensional harmonic oscillator, for which the force F = 
–kx attempts to return the oscillator to its equilibrium po- 
sition. Inserting this force into Newton’s equation gives 

2 2d d =m x t kx             (1) 

which is easily solved to yield 

   = sinx Ct wt           (2) 

where 2 = k m  is the angular frequency of osci- 
 are determined 

by the initial position and initial velocity of the oscillator. 
Textbooks often present a generalized version of the har- 
monic oscillator by including a velocity-dependent fri- 
ctional force, with friction constant ,  

2d d
2

=
dd

x x
m kx

tt
             (3) 

which also can be easily solved to yield 

   1= exp cos
2

t
x C tt

m
  

 
     (4) 

where the oscillator is seen to be damped exponentially 

 

by the frictional force and the angular frequency 
( 2 2 2

1 = 4   ) is somewhat reduced. 
orld were to consist soleIf the whole w ly of uncoupled 

ha

n 
th

rmonic oscillators, the subject of mechanics could end 
right here. However, most mechanical systems are much 
more complicated. Among the generalizations of the 
simple harmonic oscillator that have been considered in 
recent years is the stochastic oscillator, which is an 
oscillator that is subject to random external influences. 

There are different ways of including fluctuations i
e oscillator model. These may arise from internal 

fluctuations (thermal noise) described by 

 
2 2d dx x

2
=

dd
x t

m t mt
          (5) 

The random force 

 

 t  
uatio

appearing on the right-hand 
side of the oscillator eq n describes Brownian motion. 
An additive random force, originating from the random 
number of molecules of the surrounding medium that 
collide with the Brownian particle from opposite sides, 
results in random zigzag motion. There are many books llation and the two constants C and 
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describing different aspects and many applications of 
Brownian motion [2]. External fluctuations have a dif- 
ferent origin, connected with random changes of the os- 
cillator parameters manifested as random frequency and 
random damping. The former is described by the follow- 
ing equation (with = 1m ),  

 
2d 2d

1 = 0
d

t x
t

            (6) 

The many appli of this model include different 
fie

2 d

x x

t

cations 
lds in physics, such as wave propagation in a random 

medium [3], spin precession in a random external field 
[4], turbulent flow on the ocean surface [5], and as well 
as in biology (population dynamics [6]), in economics 
(stock market prices [7]) and so on. The case of random 
damping is described by the equation 

 
2d dx x 21 = 0

dd
t x

t
            (7) 

This equation was fi  used [8] to analyze water waves 
in

ssibility for 
in

2t

rst

 

fluenced by a turbulent wind field. However, this 
equation, with the coordinate x and time t replaced by the 
order parameter and coordinate, respectively, transforms 
into the Ginzburg-Landau equation with a convective 
term which describes phase transitions in a moving sy- 
stem [9]. There are many problems in which the particle 
advected by the mean flow passes through the region 
under study, including phase transitions under shear [10], 
open flows of liquids [11], dendritic growth [12], chemi- 
cal waves [13], motion of vortices [14], etc. 

In this article, we discuss still another po
troducing randomness in the oscillator equation, namely, 

by introducing a random mass [15-19], which is des- 
cribed by the following equation 

2d x 2
2

d
1 = 0

dd

x
t x

tt
          (8) 

There are ma  in chemical and biological 
so

  

ny situations
lutions in which the surrounding medium contains mo- 

lecules which are capable not only of colliding with the 
Brownian particle, but also adhering to it. A multipli- 
cative random force arises from the adhesion of surr- 
ounding molecules which stick to the Brownian particle 
for some (random) time, thereby changing its mass. Mo- 
dern applications of such a model include a nano-me- 
chanical resonator which randomly absorbs and desorbs 
molecules [20]. The diffusion of clusters with randomly 
growing masses has also been considered [21]. There are 
some applications of a variable-mass oscillator [22]. The 
oscillator equation may contain both a multiplicative 
random force  t , as in Equation (8), and an additive 
random force   t

   
2

2
2

d d
1

dd

x x
t x

tt
       = t       (9) 

Equation (9) describes Brownian motion wi
sion. There are many other applications of an
wi

In the following we will consider noise 

th adhe- 
 oscillator 

th a random mass [23], such as ion-ion reactions [24- 
26], electrodeposition [27], granual flow [28-30], cos- 
mology [31-34], film deposition [35], traffic jams [31,32], 
and the stock market [38,39]. 

2. White and Colored Noise 

 t  with 
  = 0t  having the correlator 

     1 2 1 2=t t r t t         

ls characterize the fluc

   (10) 

Two integra tuations: the strength 
of the noise D 

   
0

= dD zt t z 


         (11) 

and the correlation time ,  

   
0

1
= dz zt t z

D
  


       (12) 

2.1. White Noise 

Traditionally one considers two different forms of noise, 
. For white noise, the function white and colored noise

1 2r t t  has the form of a delta-function, 

     1 2 1 2=t t D t t           (13) 

e “white” noise comes from the The nam fact that the 
Fourier transform of (13) is “white”, being c
out

onstant with- 
 any characteristic frequency. Equation (13) means 

that noises  1t  and  2t  are statistically indepen- 
dent, no matter how close 1t  and 2t  are. This extreme 
assumption, which leads to a non-physical infinite value 
of  2 t  in (13), means that the correlation time   
is not zero, as assumed in (13), but smaller than all other 
characteristic times in the problem. It is clear that for our 
problem, the noise in (8) cannot be white since a large 
negative noise,   0,t   implies a negative mass of the 
oscillator. 

2.2. Colored Noise 

All non-white sources of noise are called colored noise. 
type of noise, the so-called dicho- We consider a special 

tomous noise (random telegraph signal), which randomly 
jumps between two different values, either   (sym- 
metric dichotomous noise) or A  and B  (asymmetric 
di- chotomous noise), which are characterized by the 
Orn- stein-Uhlenbeck correlation function. For the 
symmetric noise, one has the following form 

   
2

1 2 1 2= expt t t t
  


          (14) 
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White noise (13) is defined by its strength 
Ornstein-Uhlenbeck noise is characterized 
ram

D while the 
by two pa- 

eters, 2  and .  The transition from the Ornstein- 
Uhlenbeck noise (14) to white noise (13) occurs in the 
limit 2   and ,   with 2 = D   in (14). 

Returning to our Equation (8) and multiplying it by 
 1 ,t  one obtains  

    
2

2 2
2

d d
1 1 = 0

d

x
t x

t
           (15) 

dt 

Since the oscillator mass is positive, the condition 
should be satisfied in studies of Equatio2 < 1  

For the asym


n (15). 
ptotic case of small oscillations of the mass, 

2 1 , Equation (15) can be rewritten as 

 
2

2 2
2

d d d
=

d dd

x
x t x

t tt
        


    (16) 



Therefore, the small dichotomous fluctuations
are equivalent to simultaneous fluctuations o
que

 of mass 
f the fre- 

ncy and the damping coefficient. 
For asymmetric dichotomous noise, it is convenient to 

replace  t  in Equation (8) by a positive random force 
 2 ,t  which corresponds to the fact that the mass of 

the Brownian particle can only increase due to the adhe- 
sion of the molecules of the surrounding medium,  

   
2

2 2
2

d d
1 =

dd

x x
t x t

tt
            (17) 

The quadratic noise  2 t  can be written as 

 2 2=t                (18) 

with 2 = AB  and .= A B  Indeed, for  = A , 
=one obtains  =2 2AB A B A  A , and for = ,B   

2 2B  =
Then, Equation (17) takes llowing form, 


 the fo

   
2

2 2d dx x            (19) 

Multiplying Equation (19) with 

2
=

dd
t x t

tt 1

= 0  by 
 one obtains  21 ,t   

 
2

2 2d d d
1 =

d

x x x
R x

t
       


2

2 dd
x

tt
     

  
 (20) 

where 2 22 2= 1 .R      

In the next two Sections we calculate two first 
ts, momen x  and 2x  f uations (15) and (19) or Eq

To split the correlations, we use the well-known Shapiro- 
Loginov procedure [40] which yields for exponentially 
correlated noise (14), 

d d
=

d

g

d d
=

d d

g
g

t t
   

 

 

      (22) 

and

d d
=

dd

nn

n

g
g

tt
    

 
       (23) 

d
g g

t t
            (21) 

or 

If d d = ,g t A   Equation (21) becomes 

2d
=

d
g g

t
     

an r white noise (

       (24) 

d fo 2    and    with 
2 = D  ), one gets 

=g D        

 First M

3.1. White Noise 

Equation (8) can be rewritten in the following form 

        (25) 

3. oments 

2d 2
2

2

d d
=

d d2d

x x x
x

t t
             (26) 

t

Based on linear response theory, the output  x t  of 
the system to the input 2 2d dx t  is 

 

     2

0
1

d1
= exp sin

2

t x
t u u u

 


         


 
1 2

d
d

x t

u
t

t



 

(27) 

where 2 2
1 = 4   .  Finding 2 2d dx t  from Eq  

ation (27), inserting it into Equation (26) and using the 
well-known formula for splitting the correlations, 

u-

           
2d d

=
x x

t t t
2

1 1 1 1d d
t t t

t t
      (28) 

one obtains for white noise, 

 
2

2
2

d d
1 =

dd
D x x x

tt
     0   

tion of oscillator’s mass. 

3.2. Symmetric Dichotomous Noise 

m 

   (29) 

which means the renormaliza

Averaging Equation (15) over an ensemble of rando
functions  t  and using Equation (22) with =g x  

leads to 

 
2

2 2
2

d d
1

dd

x

2d
=

d

x
tt

      
        ) 

x
t

         
 

 (30

where we assume white-noise correlations of noises 
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 t  and  that is,   ,t      1 1= .t t t t     
The ne tion w func x  

quatio
enters Equation (30). One 

can obtain a second e n for the two functions x  
and x  by multiplying Equation (15) by  t  and 
averaging, using again Equation (22) with =g x  and 

= d dg x t ,  

 
2

d2 2

2 2

d
1

d d

d
= 0

d

x
t t

x
t

     

  

      
   

   
 

    ( ) 

 


31

The use of dichotomous noise offers a major advan- 
tage over other types of colored noise by terminating an 
infinite set of higher-order correlations, using the  

that 

fact 

 2 2= .t   Eliminating x  from Eq  

(30) and (31), one obtains the following cumbersome 
eq

uations 

uation for the first moment  x t  

   

 

  
 

 

2 2

2 2

2 2 2

2 3

d

= 1

4 3
2 2

4 3

d d
1 2 2 1

d d
2

2 2 d
1

2

2

d
d

2

x x

t t
        

x
   

t

   

 

  
x

t

x

  

    

    

  

    
     

   (32) 

3.3. Asymmetric Dichotomous Noise 

Starting from Equation (19) with = 0 , using Equation 
(23) with  and averaging ov se yields = 2n , er noi

 
2

2 2
2

2
d

d d
1

dd

= 0
d

x
tt

  
 

   
      (33) 

A second equation for the two functions 

x
t

   
 

 

 

x  and 
x  can be obtained from Equation (20) by using 

Equation (23) (with  and  = 2n = 1n ),

 
2

2 2
2

2
3 2d d

= 0
d d

x
t t

    
               

     

) 

d d
1

dd
R x x

tt
  

      
  

 (34

Excluding the correlator x  
wing

 

     

    

   

from Equations (33) 
and (34), one obtains a follo  fourth-order diffe- 
rential equation for x  

 

4
22 2

4

3
2 2 2

3

2
2 2 2 2 2 2

2 2 2 2 2

d
1

d

d
2 2 1 2 1

d

d
3

d

1 = 0

x
t

x
t

2

2 2 2

1 2
d

d
1 2

x
t

x    

 

       t

x



     

       

    

     

        

          



       

 

(35) 

4. Second Moments 

We restrict ourselves to the case of symmetric dichoto
mous noise. One can rewrite the second-order differential 
Equation (9) as an equivalent system of two first-order 
differential equations  

- 

2d d d
= ; =

d d d

x y y
y y

t t t
x         (36) 

 Equation (36) by Multiplying the first of 2x  and the 
second by 2y  yields 

2 2 2 2d d d
= 2 ; 2 2 2 = 2

d d d

y
x xy y y y xy y

t t t
       (37) 

Averaging this equation by using (25) yields 

2

2

2 2 2
dd d

2
d d

x

t t
           

  

 (38) 

1

d
= 2 ;

d

= 2
d

x xy
t

y y D
t



In deriving (38), we assumed that  t  is white
with the correlator 

 noise 

     =t t D t t       1 2 1 2 1     (39) 

Analogously, multiplying Equations (36) by y and x, 
respectively, summing and averaging the sum leads to 

2 2d d
=

d d

y 2xy y x xy x x
t t

           (40) 

which yields after averaging  

2 2 2 2d
=

d

d

d
xy

t

y xy y xy x
t

          
 

 (41) 

Equations (38) and (41) contain new correlators 2y  
.xy  and One can calculate these and the analogous 

correlator 2x  by multiply
by 2 , 2

ing Equations (36) and (40) 
x y   and ,  respectively, and averaging, 
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2d
= 2

d
x xy

t
    

 
      (42) 

2 2 2 2d d
2 2

d d
y y xy

t t
          

 
= 0  (43) 

2 2 2 2 2 2

d

d
xy

t

xy y x

  

   

  
 

  
    (44) 

d
=

d
y

t




In the case of dichotomous noise, we spli
order correlators into lower-order correlators by using 

t the higher- 

2 2=  , so that, for example, 2 2y  2 2= .y  By 
 (44), this m

for the six
eans we obtain six equations, (38) and (40) -

 variables 2 ,x  2 ,y  ,xy  2 ,x  2 ,y  
and .xy  

namic equat
We will not write down the cumbersome 

dy ions for the second moments, w
be easily obtained from this system of differential e
tions, but shall restrict our attention to the limiting case 
of

hich can 
qua- 

 white noise which gives  

2 1=
D

x
2

es  the well-known 
own

andom frequency (Equation 
(6)) and random damping (Equation 
spectively, 

            (45) 

This result coincid with result for 
pure Br ian motion. The independence of the stati- 
onary results on the mass fluctuation is due to the fact 
that the multiplicative random force appears in Equation 
(8) in front of the higher derivative. It is remarkable that 
these results are significantly different from the station- 
ary second moments for the r

(7)), which are, re- 

   
2 21 1

22 2
= : =

1 22

D D
x x

DD     
 (46) 

showing the “energetic” instability [41]. 
It turns out that, in the presence of dichotomous os- 

cillator mass fluctuations, the stationary second moment 
2 ,x  in contrast to its white noise form (45), may lead 

to instability, 2 < 0.x  

4.1. Correlation Function 

The correlation function can be found along the
lines as was done for the second moment by multiplying 

 same 

Equations (36) by  1x t  and averaging the resulting 
equations, which gives 

       1 1

d
=

d
x t x t x t y t      (47) 

t

         

       

1

d d
=

d d
x t y t t

t 1x t y t
t

2
1 1x t y t x t x t  

The new correlator 



     1t x t y t  can be found 
by using Equation (28 ding to ) lea

           

         

           

1 1

2
2

1 1

2
1 1

d
= ;

d

d d

d d

= 0

t x t x t t x t y t
t

t x t x t x t y t
t t

t x t y t t x t x t

  

  

   

  
 

   
 
 

   (48) 

nd (48), one can 
e correlation function 

From Equations (47) a find the fourth- 
order differential equation for th

   1 ,x t x t  which, due to the linearity of this equation, 
coincides with Equation (32) for the first moment. 

For dichotomous noise, the correlation function shows 
a non-monotonic dependence on both the noise strength 

2  and the inverse correlation time 1.  

4.2. Polynomial Dichotomous Noise 

Pr

ost general
owing 

eviously we treated linear and quadratic dichotomous 
fluctuations of the oscillator mass. Here we consider the 
m  case of polynomial dichotomous noise [42], 
which transforms the oscillator equation to the foll
form 

   
2

=1 2

d d
1

dd
n k
k k

x x
a t

tt
      

2 =x t      (49) 

where  t  is white noise 

     1 1 21 2 = D t tt t          (50) 

For asymmetric dichotomous noise  t , one gets 
[42] 

         =k
k kb ct g t g tt g t      (51) 

where 

   
= ; =

kk kk

k k

A B
b c

BA A B

A B A B

  

 
   (52) 

It is easy to check that for Equation (51) re- 
du  the

by

= 2k  
ces to Equation (18), after multiplying  latter equ- 

ation   g t  and averaging. ogous to the pre- 
vious analysis, Equation (49) written as 
order differential equations, 

Anal
can be re two first 

   2
=1

dx
= ;

d
d d d

=
d d d

n k
k k

y
t
y y y

a t y x t
t t t

   (53) 

       

Multiplying the first equation by 2x  and the second 
by 2y  an eraging one gets after using Equations (51) 
and (23) 
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Copyright © 2012 SciRes.                                                                                 WJM 



M. GITTERMAN 

Copyright © 2012 SciRes.                                                                                 WJM 

118 

 

 

2d
= 2 ;

d
x xy

2 2 2
22 2

=1 1

d d dd
= 2 2 2

d d d
n
k k k

t

y y y
a b c Dxyt y y

t t t
  

          
 

   (54) 

 
Equation (54) contains the new correlator 

dk t

2y . 
 Equa- One can calculate this correlator by multiplying

tions (53) by 2 x  and 2 ,y  which gives after ave- 
raging 

 

 

2

21 22 2
=1

d
= 2

d

d d
2 = 2 2

d d
n k
k k

xyx
t

a xyt yy y
t t

 

    

  
 
          
   


         (55) 

last equation in Equation (55),  

 
or, by inserting (51) with k  replaced by 1k   into the 

2

2 2
=1 1 1

d
2

d

d
=

d
n
k k k k

y
t

a b cy y
t

 

  

  
 

         
   (56) 

iplying Equations (53) by y and x, respectively, 
and summing these equations one gets by using Equation 
(23), 

Mult

 

 2 2
=1

d
2

d

d
= 2 2 2n k k

k k

xy
t

y a xy y xy x   
dt

        

(57) 

 using Equation (51), 

  222 2 xyy   

which yields, after averaging and

 2 22 2 2
=1

d d
2 = 2

d d
n
k k k k k ky a b c b cxy xy xy xyy y x

t t
  

            
       (58) 

Multiplying Equation (57) by   and averaging, one obtains 

    22 2 2 2
=1 1 1 1 1

d d
2 = 2

d d
n
k k k k k ka b c b cxy xy xy xyy y y x

t t
        

                   
  (59) 

In this way we obtain six equations, (54)-(56) and 
(58)-(59), for the six variables 

 

2 ,x  2 ,y  ,xy  
2 ,x  2 ,y  and .xy  W  these e will not solve

cumbersome dynamic equations, but prese
solution for the stationary 

nt only the 
( d d = 0t ) second moment 

2 ,x  
 

 
   

2 2
1 4 3 212

32

2 2
= 2

2

S S W SD
Sx

UW V

    




         
  

           

and 

 (60) 

 
where  

=1 =1 1 2
n n
k k k k ka b a b S 

    (61) 1

=1 3 =1 1 4

;k

n n
k k k k k k

S

a c S a c S

 

   

 

 

2
2

2

1 4
2

1 4
2

2 2
= ;

= 2 ;
2

= 2 2
2

S
U

S S
V S

S S
W S

    
 





 


  

 

 
   

 

   (62) 

As one can see from Equation (60), the polynomial 

the oscilladichotomous fluctuations of tor mass can lead 
to instability, 2 < 0,x  for som para- 

s
e values of the 

meter . 

5. Resonance Phenomena 

The simplest example of mechanical resonance is a har- 
monic oscillator subject to a periodic force, where the 
steady-state amplitude of the oscillator approaches in- 
finity when the external force frequency approaches the 
eigenfrequency of the oscillator. This phenomenon was 
probably already known to the ancient Egyptians who 
invented the water clock, but the classical demonstration 
of dynamic resonance are quite recent architectural flaws 
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uncovered in the US. The first was the Takoma bridge 
which was destroyed by the wind force at the resonance 
frequency, and the second was the Paramount Commu- 
nication Building in New York where the winds
the top floors and pried windows loose from their case- 
ments. 

One of greatest achievements of twentieth-century phy- 
sics was establishing a deep relationship between deter- 
m

 sound c
istic and half-random terms. However, this im- 

pression is faulty due to the close connection between de- 
ugh apparently different 

 twisted 

inistic and random phenomena. The widely studied 
phenomena of “deterministic chaos” and “stochastic re- 
sonance” might ontradictory, consisting of half- 
determin

terminism and randomness, altho
forms of behavior [43]. 

Here we consider a new manifestation of the reso- 
nance of an oscillator. The dynamic equation of motion 
of a bistable underdamped one-dimensional oscillator 
driven by a multiplicative random force   ,t  an addi- 
tive random force   ,t  and two periodic forces,  

 sinA t  and  sin ,C t  has the following form 

 

     

2
2 3
02

d d

dd
= sin sin

x x
x t x bx

tt
t A t C t

  

 

   

  
     (63) 

The dynamic resonance mentioned above corresponds 
to = = = = = 0b C    and 0.   Let us consi- 
der some other limiting cases of Equation (63). 

1) Brownian motion ( 0 =  = = = = 0b A C  ) has 
been studied most widely with many applications. The 
equilibrium distribution comes from the balance of two 
contrary processes: the random force which tends to 
increase the velocity of the Brownian particle and the 
damped force which tries to stop the particle [1]. 

2) The double-well oscillator with additive noise 
( = = = 0A C ) and small damping, ,   shows 
two or three peaks in the power spectrum (Fourier com- 
ponent of the correlation function) descriptive of fluctu- 
at

mped 

ion transitions between the two stable points of the 
potential, small intra-well vibrations and the over-the- 
barrier vibrations [44]. 

3) Stochastic resonance (SR) in overda
( 2 2d d = =x t C nd underdamped ( = =C= 0 ) a 0 ) 
oscillators is a very interest  
nomenon, where the noise increases a weak input signal. 
SR occurs in the case that a deterministic tim
the external periodic field is synchronized with a stocha- 
st

ing and counterintuitive phe-

e-scale of 

ic time-scale, determined by the Kramer transition rate 
over the barrier. 

4) Stochastic resonance in a linear overdamped osci- 
llator ( 2 2 = 0C ), as distinct d d = = =x t b m the 
nonlinear case, allows an exact solution [45,46]. How- 
ever, this effect occurs only when the multiplicative 
noise  t

fro

  is colored and not white. 
5) Vibrational resonance  = = 0 ,   which occurs 

in a deterministic system, manifests itself in the enhance- 
ment of a weak periodic signal through a high-frequency 
pe

ochastic reson
riodic field, instead of through noise, as in the case of 

st ance. 
6) “Erratic” behavior shows up as a “random-like” 

phenomenon in a simple system  
2 2d d = b = = = 0x t    with two incommensurate ex- 

ternal frequencies,   and .  

5.

d
become c

ation (19) with 

1. Stochastic Resonance 

Noise, which always plays a distractive role, appears as a 
constructive force, increasing the output signal as a fun- 
ction of noise intensity. This phenomenon was proposed 
as the explanation of the periodicity of the ice ages [47, 
48] and has found many applications [49]. 

The standard definition of stochastic resonance (SR) is 
the non-monotonic dependence of an output signal, or 
some function of it, as a function of some characteristic 
of the noise or of the periodic signal [49]. At first glance, 
it appears that all three ingredients, nonlinearity, periodic 
forcing an  random forcing, are necessary for the app- 
ea has rance of SR. However, it lear that SR is 
generated not only in a typical two-well system, but also 
in a periodic structure [50]. Moreover, SR occurs even 
when each of these ingredients is absent. Indeed, SR 
exists in linear systems when the additive noise is re- 
placed by nonwhite multiplicative noise [46]. Determi- 
nistic chaos may induce the onset of SR instead of a 
random force [49]. Finally, the periodic signal may be 
replaced by a constant force in underdamped systems 
[51]. 

Consider the linearized Equ = 0  of 
ss subject to  an oscillator with random ma  an external

periodic field,  

   
2

2 2
2

d d
1 2 = sin

dd

x x
t x a t

tt
            (64) 

Repeating the procedure leading to Equation (35), one 
obtains a fourth-order differential equation for ,x  

 

     

    

   
 

    

   

4
22 2

4

3
2 2 2

3

2
2 2 2 2 2 2

2

2 2 2

2 2 2 2 2

2 2 2 2 2

2 2

d
1

d

d
2 2 1 2 1

d

d
1 2 3

d
d

1 2
d

1

1 sin

2 1 cos

x
t

x
t

x
t

x
t

x

a t

a t



     

       

    

    

  

  

     

        

           

       

       
        
        

 

(65) 
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In a similar way, one can obtain the equation for the 
second moment 2 ,x  associated with Equation (9), 
which is transformed into six equations for six variables, 

2 ,x  2 ,y , xy , 2 ,x  2y  and ,xy  but 
s. we shall not write down these cumbersome equation

ti
Analogous to the cases of random frequency and ran- 

dom damping [47], we seek the solution of Equa on (65) 
in the form 

 = sinA tx             (66) 

One easily finds  
1/22 2

5 6 5 7 6 81
2 2

5 8 6 77 8

= ;  = tan
f f f f

A
f f

f f f ff f
     

      
   (67) 

with 

 
  

 
 

2
5 4 2 6 3

3 2 2
7 2 1 3 4

2 2 2 2 2 2
8 4 2 1 4 3

4 2 2
1 2

2 2 2

4

= ; = ;

= 2 2 2

= 2

=

f f f a f f a

2
3

 
1 2

2
3 2 2

= 1 ; = 1 ;

= 2 ;

f f f f f f

f f f f f f

f f

f

  

    



  

     

    

 

f f

f f f

 

     

   

  

One can compare Equations (66)-(68) with the equa- 
tions for the first moment 



(68) 

x , obtained [52] for the 
cases of random frequency and random damping, re- 
spectively, subject to symmetric dichotomous noise, and 
extended afterwards [53,54] to the case of asymmetric 
noise. All these equation are of fourth order with the 
same dependence on the frequency 
fie tly different dependence on the pa- 
ra  

5.2. Vibrational Resonance 

stochastic resonance, vibrational resonance mani- 
tself in the enhancement of a weak periodic signal 

through a high-frequency periodic field, instead of through 
noise as in the case of stochastic resonance. The deter- 
ministic equation of motion then has the following form, 

  of the external 
ld but with a sligh

meters of the noise.

Like 
fests i

   
2

2 3
02

d d
= sin sin

dd

x x
x bx A t C t

tt
        (69) 

Equation (69) describes an oscillator moving in a sym- 
metric double-well potential   2 2

0= 2V x x 4 4bx  
with a maximum at and two minima = 0x  x  with 
the depth d  of the wells, 

2 4
0 0= =

4
x d

b b

 
           (70) 

The amplitude of the output signal as a function of the 
amplitude C of the high-frequency field has a bell shape, 

showing the phenomenon of vibrational resonance. For 
  close to the frequency 0  of the free oscillations, 
there are two resonance peaks, whereas for smaller  , 
there is only one resonance peak. These different results 
correspond to two different oscillatory processes, jumps 

tions inside one well. between the two wells and oscilla
Assuming that ,  resonance-like behavior (“vi- 

brational resonance” [55]) manifests itself in the response 
of the system at the low-frequency  , which depends 
on the amplitude C and the frequency   of the high- 
frequency signal. The latter plays a role similar to that of 
noise in SR. If the amplitude C is larger than the barrier 
height d, the period  field during each half π   

other. transfers the syste  one  to the 
M

m from potential well
oreover, the two frequencies   and   are similar 

to the frequencies of the period  
rate of jumps betwee two minima of the under- 
damped os llator. Therefore  by choosing an appropriate 
relation bet een the input si

i the Kramers
e  

ci ,
w gnal 

c signal a

sin

nd 

 

n th

A t  and the am- 
plitude C of th or t
one can obtain a non-monotonic depende
pu

e large signal ( he strength of the noise) 
nce of the out- 

t signal on the amplitude C (vibration resonance) or on 
the noise strength (stochastic resonance). To put this 
another way [56], both noise in SR and the high-fre- 
quency signal in vibrational resonance change the para- 
meters of the system response to a low-frequency signal. 

Let us now pass to an approximate analytical solution 
of Equation (69). In accordance with the two times scales 
in this equation, we seek a solution of Equation (69) in 
the form 

     
2

sin
=

C t
x t y t





        (71) 

where the first term varies significantly only over times 
t , while the second term varies much more rapidly. On 
substituting Equation (71) into (69), one can average 
over a single cycle of  sin .t  Then, odd powers of 

 sin t  vanish upon averaging, while the  2sin t  
term gives 1 2.  In this way, one obtains the following 
equation for   ,y t  

2 2
2 3
02 4

d d 3
n

dd 2

y y bC
y t

tt
= siby A  

 
     

    (72) 

with 

2 2 4
0

0

2 2 4
0

3 2
= 0;  = ;

3 2
=

4

bC
y y

b

bC
d

b





 


 


   
       (73) 

One can say that Equation (72) is the “coarse-grained” 
version (with respect to time) of Equation (69). For 

2 4 23 2 > ,C 0   the phenomenon of dynamic stabili- 
zation [57] occurs, namely, the high-frequency external 
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field transforms the previously unstable position = 0  
into a stable position. 

Seeking the solution of Equation (72) of the form  

   siny t y t            (74) 

and linearizing Equation (72)  gives 

 

 in 

22 2 2 2
1

=
A

   


 
       (75) 

where 

 
2

22 2
1 04

3
= 3

2

bC
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
    

A resonance in the linearized Equation (72) 
when 

  (76) 

occurs 

1 = ,   
h

which, after substituting in
leads to t e following relations between th
and frequencies of the two driving fields w
the resonant behavior,  

 Equation (72), 
e amplitudes 
hich produce 

2 2
2 2
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=
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 

 


        (77) 

In addition to the resonance phenomenon, one can 
study [58] the influence of the positions and depths of the 
potential on the vibrational resonance. Assuming that 

2 = ,b  which means0 , according to Equation (73), 
sitions of minima remain fixed, let us raise the q

that 
ue- 

maximal. 

po
stion for 
of the out

which value of a control parame
put signal to the input signal A is 

oc n 
2

ter C the ratio 
  

According to Equation (75), this curs whe

 22 2 2
1=S       is minimal, which 

by the condition 

is determined 

d d = 0,S C  which, using (76) 
, results in  

with 
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or, for 0 = 0,y  
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and for 

    (79) 
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tion (80) has real solutions for C only if 
22 > .b

Equa
  

Thus far, we considered equal values of two control 
parameters, 2

0 = b hanging the depths of potential 
and keeping the positions of minima 

 c
x  unaltere

logously, one can assu
the distance between m

or 

d. Ana- 

me that 4
0 = b  changing thereby 

inima and not the potential depth. 
Then, one obtains, f  0 = 0y ,
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and for 
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with the proviso that 22 > .b   
lts have beAll the above resu en obtained for an under- 

oscillator. It turns out [59,60] that a similar effect 
s place for an overda ped oscillator 

damped 
also take m ( 2 2d d = 0x t  

ditional addi- in Equation (69)). The influence of the ad
tive noise on the vibrational resonance
tages of the vibrational resonance compared to the sto- 
ch
been stud d [61]. 

 to E

 (Equat

 subsequent analysis of an oscil- 
lator equation with one periodic force is quite analo- 
gous to analysis of Equation (64), wh
stochastic resonance phenomenon. 

Equation (69) describes an oscillator moving in sym- 
ouble-well potential. The vibrational resonance 

in the quintic oscillator with the potential of the form 

, and the advan- 

astic resonance in the detection of weak signals have 
ie

For an oscillator with random mass one has to add two 
periodic fields quations (15), (19), and perform the 
preceding analysis of Equation (69), based on dividing its 
solution in the two time scales ion (71)) followed 
by the linearization of Equation (72) for the slowly 
changing solution. The

ich describes the 

metric d

  2 2 4 6cx        (83) 0

1 1 1
=

2 4 6
V x x bx  

]. Finally, the vibrational resonance 

neering, vi

rential equations are 

was studied in [62,63
and an appearance of chaos in the Van der Pol oscillator 
were investigated in [64]. Because of the many applica- 
tions in physics, chemistry, biology and engi - 
brational resonance still attracts great interest, and new 
applications will surely be found in the future. 

5.3. “Erratic” Behavior 

One of the great achievements of twentieth-century phy- 
sics was the prediction of deterministic chaos which ap- 
pears in the equations without any random force [65]. 
Deterministic chaos means an exponential increase in 
time of the solutions for even the smallest change in the 
initial conditions. Therefore, to obtain a “deterministic” 
solution, one would have to specify the initial conditions 
to an infinite number of digits. Otherwise, the solutions 
of deterministic equations show chaotic behavior. Deter- 
ministic chaos occurs if the diffe
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no

ini- 
stic chaos may occur only in the underdamped oscillator. 
Here, we present an example of “erratic” be
like deterministic chaos, is drawn midway between deter- 

nlinear and contain at least three variables. This points 
to the important difference between underdamped and 
overdamped equations of an oscillator, since determ

havior, which, 

ministic and stochastic behavior. 
Consider the simple example of an overdamped oscill- 

ator subject to two periodic fields, 

   2
1 1 2 2

d
= cos cos

d

x
x C t C t

t
        (84) 

We show that the solution
ratic”, being intermediate bet

s of this equation are “er- 
ween deterministic and chao- 

tic solutions. 
The stationary solutions of Equation (84) have the fo- 

llowing form 
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Replace the continuous time in Equation (84) by dis- 
crete times 22πn   [66]. The solution of this equation 
then becomes 
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If 1 2   is an irrational number, the sin factor in (86) 
will never vanish and the motion becomes “erratic”. The 
properties of “erratic” motion can be understood from the 
analysis of the correlation function associated with the 
n-th and (n + m)-th points, 
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ell-known relations between the trigono- 
metric functions, one obtains  
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Using the w
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The Fourier spectrum of the correlation function (88) 
depends on the ratio 


(88) 

1 2  . If this ratio is a rational 

number, this spectrum will contain a finite number of 
peaks. However, for irrational 1 2 

pical of de
havior ar

hich di

chastic 
ple is B

unding m
rticle indu

 random
 the B

und for 
rforme

, the spectrum be- 
comes broadband, what is ty terministic chaos. 
However, this “erratic” be ises from a simple 
“integrable” Equation (84), w stinguishes it from 
deterministic chaos. 

6. Conclusion 

We considered a new type of sto oscillator which 
has a random mass. An exam rownian motion 
with adhesion, where the surro olecules not only 
collide with the Brownian pa cing a zigzag mo- 
tion, but also adhere to it for a  period of time, 
thereby increasing the mass of rownian particle. 
The first two moments are fo dichotomous ran- 
dom noise. An analysis was pe d of the “err
m

 phenomena are compli- 
mentary and not contradictory. Due to many applications 
in physics, chemistry, biology and engineering, t
del of an oscillator with random mass will find
ap

 Oxford Science Publication, Oxford, 

Wave Propagation and Scattering in Ran-

atic” 
otion, stochastic and vibration resonances, which shows 

that deterministic and random

he mo- 
 many 

plications in the future. 
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