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ABSTRACT 

Waves of finite amplitude on a thin layer of non-Newtonian fluid modelled as a power-law fluid are considered. In the 
long wave approximation, the system of equations taking into account the viscous and nonlinear effects has the hyper- 
bolic type. For the two-parameter family of periodic waves in the film flow on a vertical wall the modulation equations 
for nonlinear wave trains are derived and investigated. The stability criterium for roll waves based on the hyperbolicity 
of the modulation equations is suggested. It is shown that the evolution of stable roll waves can be described by 
self-similar solutions of the modulation equations. 
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1. Introduction 

Mud flows are frequently encountered in mountainous 
regions, especially after torrential rains, and often exhibit 
a series of breaking waves (roll waves). These type of 
waves can also be observed as an event following vol- 
cano eruptions. A report on roll waves can be found in 
extensive references quoted by Ng & Mei [1]. The roll 
waves which occur in inclined open channels are impor- 
tant in drainage problems and have received an extensive 
treatement in turbulent regime by Jefffreys [2], Dressler 
[3], Boudlal & Liapidevskii [4], among others, and for a 
laminar sheet flow by considering the flow with quad- 
ratic distribution of velocity profile (Alekseenko & Na- 
koryakov [5]; Buchin & Shaposhnikova [6]; Julien & 
Hartley [7]; Boudlal & Liapidevski [8]). 

The discontinuous waves play an important role in en- 
gineering and geophysical processes. Roll waves consist 
of a periodic pattern of bores separated by continuous 
profiles of free boundary. The transition from uniform 
flow to intermittent flow regime is usually tackled by 
resorting to stability theory. When it is perturbed, a 
steady flow becomes unstable, if certain criteria are satis- 
fied, and evolves towards wave breaking. Dressler has 
been the first, who gave the analytical solution for such 
waves in open channel flows. Based on long wave ap- 
proximation, Dressler’s theory of roll waves was ex- 
tended in [1] to a shallow layer of fluid mud, which has 
been modelled as a power law fluid. It has been shown, 
particularly, that if the fluid is highly non-Newtonian, 

very long waves may still exist even if the corresponding 
uniform flow is stable to infinitesimal perturbations. 

The aim of the paper is to give a nonlinear study on 
stability of permanent roll waves on a shear thinning 
fluid in the frame of one-dimensional, unsteady, gradu- 
ally varied, laminar mud flow with the shear stress being 
evaluated in a conventional manner. Starting from long 
waves equations averaged over the normal to the bed [1], 
the standard procedure of roll wave construction is used 
by matching continuous solutions of shallow water equa- 
tions through stable hydraulic jumps. As the amplitude 
and the phase velocity of waves are slowly varying dur- 
ing their propagation and as these variations give rise to 
instability, the problem of stability is solved by deriving 
modulation equations for wave series. The stability crite- 
rion is formulated in terms of hyperbolicity of modula- 
tion equations that need the calculation of averaged 
quantities. 

All results presented herein can be regarded as a gen- 
eralization to a power law mud fluid in laminar flow re- 
gime of non linear stability method alredy applied to 
Newtonian turbulent flows in open channels (Boudlal & 
Liapidevskii [9]). 

2. Governing Equations 

Consider two-dimensional film flows of a non-Newtonian 
liquid on a vertical wall. The coordinate system  1 2,x x  
is defined as follows: the 1x  axis is directed vertically 
down and 2x  axis is horizontal and directed outward of 
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Note that Equation (2.5) are hyperbolic with the char-
acteristics  

the liquid layer. The longitudinal velocity component is 
denoted by 1 2  The boundary layer approxi- 
mation is assumed to be valid, with a power-law shear 
stress relation for laminar flows taken in the form  

( ,  ,  ).u t x x

  d
1

d

x
k k k

t
    u .         (2.7) 

2

n
u

n x
 

 
  

It is shown by linear analysis in [1] that any steady-state 
solution of (2.5) 
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is unstable. The instability of the uniform steady-state 
flow also can be easily checked by the Whitham method 
[9]. The flow is unstable if the velocity of the kinematic 
wave c  exceeds the velocity of long waves in (2.5), i.e. 

case n = 1 corresponds to the Newtonian fluid and 1  is 
the ordinary dynamic viscosity [1]. By assuming the fol-
lowing form of the velocity profile in the film flow  
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,       (2.2) 

the governing equations, which consist of the mass and 
momentum conservation equations averaged in the ordi-
nate direction, are reduced to the system [1]. 
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Here h is the layer thickness,  is the depth-averaged  u

velocity, 
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 is the bottom stress, g is 

the gravity acceleration, 
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 is the momen-

tum flux factor. For a shear-thinning fluid, which will be 
considered bellow, we have 0 n 1   and, consequently, 

. 1 1k  .2
In dimensionless variables introduced in [1]; namely,  

It is clear that (2.8) is satisfied for 
1

0
n

n
s su h



  , since  

0 n 1   and 1 1.2k  . 

3. Roll Waves 

Analogously to unstable flow regimes in open channel 
flows, the roll waves or periodic discontinuous solutions, 
have been constructed for (2.5) [1]. In this section we give 
the short description of roll waves in the form suitable for 
the purposes of the paper. 

Consider the travelling waves propagating with a con-
stant velocity  0D D  . Introducing the variable  

x Dt    and assuming the flow being steady in the 
coordinate system moving with the velocity , Equation 
(2.5) are reduced to the ODE 

D
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,                 (3.1) 
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where    ,    uh h u    and  
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,     (3.2) Equation (2.3) take the form (asterisks are omitted) 
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Let y and  be the critical depth and the critical ve-
locity with 

cu
  0.y   It follows from (3.1) that the nec-

essary condition of roll wave existence is 

Here the reference depth 0  and the reference velocity 

0  are expressed through the given flow rate  and the 
viscosity 

h
u 0Q
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In view of (3.2) we have 


1 1 2 1

,   ,   1
n n n

n n n
cu y D y m y

  

    .     (3.4) 

Note that 
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and, consequently, d d 0h    at the critical depth. 
Let  be fixed and 0y  s h y . Equations (3.1)-(3.2) 

take the form  
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To find the function ( )A s in (3.6), the following iden-
tity is used: 

   221 1k k    . 

Furthermore, the function ( )A s  can be represented as 
follows 
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Now we can construct the two-parameter family of roll 
waves as follows: for given  and m0y  y h yz   we 
put z h y , 1w z , . Note that h yw h  and h  
are the conjugate depths, since the Rankine-Hugoniot 
conditions for discontinuous solutions of (2.5), which are 
reduced to the relation  

   G h G h   or 1w  z



,         (3.8) 

are fulfilled. The stability condition for shocks satisfying 
(3.8) takes the form (Rozhdestvenskii and Janenko [10]) 

h h   or z w               (3.9) 

Thus the admissible values of the governing parameters 
 ,  y z , for which a roll wave exists, belong to the domain  
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4. Modulation Equations 

It is shown in the previous section that analogously to the 
roll waves in open channel flows governed by the classic 

shallow water theory (Whitham [10]), the periodic trav-
elling waves (roll waves) in film flow of a non-Newto- 
nian fluid can be represented by the two-parameter fam-
ily of discontinuous solutions of (2.5). We chose  and 

 as such parameters. The problem on nonlinear stability 
of periodic wave trains with slowly varying values  
and  can be solved by analysis of hyperbolicity of the 
modulation equations for roll waves (Boudlal and 
Liapidevskii, [11]). After averaging (2.5) over the fixed 
length scale, which is large enough compared with the 
length of roll waves, we have the following modulation 
equations: 
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All averaged quantities can be expressed as functions 
of  and  as follows : y z
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Here we have used (3.1)-(3.2), (3.8) for periodic roll 
waves defined by parameters  and . y z

In view of (4.2) and (3.4) the modulation equations 
take the form 
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The nonstationary evolution of the governing parame-
ters  ,  y z  for a periodic wave train is described by 
Equation (4.3). We say the roll waves are stable if the 
modulation Equation (4.3) for corresponding values 
 ,  y z  are hyperbolic. Considering  and y  z z  
as new dependent variables instead of  and , we 
can find the characteristics of (4.3) from the quadratic 
equation 
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Here “·” denotes the differentiation on z  and 
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Approximate values of characteristics are given by 
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 . In this case the modulation equations simplify con-
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The dependence  z   for Equations .8) 
with n = 1 is shown in Figure 1 for real roots of (4.5) 
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   z  Figure 1. Dependence for (4.3), (4.8). 
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A solution of (4.9) can be represented in the form 

   

   
 

0

0
z

     (4

2 , exp d ,

.
3

z

y z y y s s

z
z

z z

  

 


 

 







.10) 

Here  z  is a solution of (4.3) for the co
ing family of characteristics. The solution (4.10) can be 
applied to explain some specific features of roll wave 
dy s con

the numerical calculations 
Meza and Balako- 

ling films of Newtonian 

rrespond-

namic sidered below. 

5. Roll Wave Dynamics 

In this section we compare 
performed for the model derived by 
taiah (2008) for vertically fal
fluid with numerical solutions of (2.3) for n = 1. Both 
models are derived for moderate Reynolds numbers of 
flow, but in contrast to the former model, the surface 
tension in Equation (2.3) is ignored. Let us rescale (2.3) 
slightly according to (Meza and Balakotaiah, 2008). For 
that we introduce the Reynolds number Re  and the 
Weber number We  as follows 
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It is clear that for  and  Equatio
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periodic wave trains generated by monochromatic initial 
perturbations is very alike for both models. Note that 
Equations (5.1) and (5.2) are written in dimensionless 
variables. The characteristics of (5.1) with 0We   co-
incide with (2.7) and are positive. Therefore, to find a 
solution of (5.1) in the domain  

  , :0 , 0T x t x L t T      , we must put the values 
of  ,h q 0,

0, 0
 at the boundaries and 0t x   L

x t T   . The corresponding data are taken from 
(Meza and Balakotaiah, 2008) for the cases considered in 
their paper, namely: 

0We  1n  . ns (2.5) 

les. The momentu d by Meza and 
Balakotaiah [13] gives the more accurate dispersion rela-
tions comparing with the Shkadov model as it has re-
ported in their paper:    

   
   1 3

,0 ,0 1,

0, 1 0.1sin 2π ,

0, 0, .

h x q x

q t ft

h t q t

 

 



        (5.3) 
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t
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 

 
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2

Re Re
5 35 35

339 9 373 41
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2837 449 1

  Re
420 70 3

xx

xx
xxx

x x

x x x
x

xx

hh h

h q qh
hh h h

h h
qh

q Wehh
h

 

   

  

  (5.2) 

We will compare below numerical solutions of the 
model (5.2) presented in [13] with the corresponding 
numerical solutions of the hyperbolic model (5.1) with 

We restrict our attention to the case 1 in [13] with 
Re 3.848 . The Weber number for (5.2) is finite  
( 10We  ) and it vanishes for (5.1). The values of the 
dimensionless frequency f  are varied to demonstrate 
its influence on roll wave dynamics. 

Numerical calculations using a variant of the Godunov 
standard scheme illustrate the development of roll waves 
on the free surface of a thin film flowing on a vertical 
wall in the frame of the hyperbolic model (5.1). In Fig-
ures 2-4 the perturbations of free surface of the liquid 
layer calculated by (5.1) are comparing with correspond-

0e  . It will be shown that despite of the difference in 
the shape of individual roll waves for the models with 
and without surface tension, the evolution of nonlinear  

W

 

 
(a) 

 
(b) 

Figure 2. Wave profile in the forced film flow of the Newtonian fluid ( , = , ,  1 Re 3 85 0 002 2125. .n f t ): (a) Equation (5.1), 

We = 0; (b) Equation (5.2), We = 10. 
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(a) 

 
(b) 

Figure 3. Wave profile in the forced film flow of the Newtonian fluid ( , = , ,  1 Re 3 85 0 0386 1325. .n f t ): (a) Equation 

(5.1), We = 0; (b) Equation (5.2), We = 10. 

do not exceed a 
ow, 

 
ing calculations from [13], at given time. In both cases 
small perturbations, which amplitudes 
small fraction of the depth of the initial steady-state fl
are developing into roll waves of finite amplitude. Note 
that the waves stop to grow after they reach some critical 
value of amplitude. The interesting feature of roll wave 
evolution is the transition from “saturated” waves to very 
long waves (“tsunami” waves according [11]). Such 
transition is most pronounced in Figure 4. It is seen from 
Figures 4(a)-(c) that the length of the transition zone is 
increasing with time linearly. The analysis of the nonsta-
tionary evolution of roll wave packets is the subject of 
future investigations. Here we just give an idea how the 
self-similar solutions (4.10) can be applied to describe 
the transition “0” - “1” shown in Figures 4(a)-(c). First 
of all, for given frequency 0f  of the monochromatic 
wave packet “0”, the governing parameters  0,y z  are 
uniquelly determined by (3.4), (4.2), (4.7). Furthermore, 
in virtue of (4.10) the left bo ndary u  2

0 0 0y z    of 
the centered simple wave is known. The righ dary 
of the simple wave is calculated using (4.10) and the ad-
ditional condition for “tsunami” waves: 

This al alues for the 

t boun

1 1 1 1h y z   .  

tion. Therefore, the transition “0” - “1” a)- 
(c) can be described by the centered simple wave of (4.9) 
moving on the left 

gorithm gives the reasonable v
boundaries of the states “0” and “1” in numerical calcu-
lations of the nonstationary problem of roll wave evolu-

 in Figures 4(

     and the roll waves shown 
in Figure 4 are stable, since the governe s d parameter
 ,y z  in a simple wave always belong to the hyper-
bolicity domain of the modulation equations 

6. Conclusion 

We have investigated the roll wave generation on verti-
cally falling films b onlinear hyperbolic model 
(2.3), in which the viscous effects are taken into account 

suming that the velocity profile of an exact 
steady-state solution of the two-dimensional p

y the n

by as
roblem can 

he one-dimensional wavy flows. The 
 the first order long-wave approxima-

 

be used also in t
model is based on
tion of non-Newtonian fluid flows, which shear rate is 
modeled by a power law [1]. The capillarity effects are 
ignored to reveal the interplay between nonlinear and 
viscous terms in the governing equations. It is shown that 

Copyright © 2012 SciRes.                                                                                 WJM 
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(a)                                                            (b) 

       
(c)                                                (d) 

        
(e)                                                   (f) 

Figure 4. Wave profile in the forced film flow of the Newtonian fluid ( , = , 1 Re 3 85 0 0447. .n f ): (a)-(d) Equation (5.1), We 

= 0; (e)-(f) Equation (5.2), We = 10; (a) ; (b) 669t  2012t ; (c)-(f)  1345 . t

 
the periodic discontinuous solut

ressed in the terms of the hyperbolicity of modulation 

 and without surface tension 
reveal that in spite of the 

 shapes the behav
ery alik for the models. In particular, the transition 

from “saturated” to “tsunami” waves described in [13] 

ions of (2.3) (roll waves) lution for the models with
can be described by two parameters analogously to the 
roll waves in open channel flows. Moreover, the nonlin-
ear stability of finite amplitude roll waves can be ex-

effects difference in the indi-
vidual wave ior of roll wave packets is 
v e 

p
Equations (4.3) for the governing parameters of roll waves. 
Comparison of numerical calculations of roll wave evo-

can be described by a simple wave of the modulation 
Equations (4.3). 

Copyright © 2012 SciRes.                                                                                 WJM 
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