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ABSTRACT 

 
Precision irrigation techniques have revolutionized protected cultivation systems worldwide by 
optimizing water use efficiency, reducing resource consumption, and enhancing crop yield and 
quality. Key technologies covered include drip irrigation, micro-sprinklers, subsurface irrigation, 
sensors for monitoring soil moisture and crop water status, automated irrigation scheduling 
software, and the integration of these tools with fertigation systems. Case studies from leading 
horticultural regions illustrate best practices and the benefits of precision irrigation, such as water 
savings of 40-70%, fertilizer reductions of 30-50%, and yield improvements of 20-40% compared to 
conventional irrigation. However, challenges remain in terms of high initial costs, maintenance 
requirements, and the need for grower training and technical support. In Asia and India, government 
initiatives and public-private partnerships are driving the expansion of protected cultivation with 
precision irrigation to boost productivity, conserve resources, ensure food security, and increase 
smallholder incomes. Future directions emphasize sensor-based automation, data-driven decision 
support systems, crop-specific precision irrigation strategies, and the integration of precision 
irrigation with other technologies like hydroponics, vertical farming, and renewable energy to further 
enhance the sustainability and profitability of protected cultivation.  
 

 
Keywords: Precision irrigation; protected cultivation; greenhouse horticulturel; water use efficiency; 

sensors. 

 
1. INTRODUCTION 
 
Precision irrigation techniques have emerged as 
a critical tool for enhancing the productivity, 
efficiency, and sustainability of protected 
cultivation systems worldwide (Tawegoum et al., 
2006; Montero et al., 2009). In the context of 
protected cultivation, where crops are grown in 
greenhouses, high tunnels, or other controlled 
environments, precision irrigation becomes even 
more important due to the intensive nature of 
production, the high value of crops, and the need 
to maximize resource use efficiency (Ruiz-Garcia 
et al., 2009). In 2020, the precision irrigation 
market was valued at USD 8.50 billion and is 
projected to reach USD 20.99 billion by 2026, at 
a CAGR of 16.3% during the forecast period 
(Marketsand Markets, 2020). Protected 
cultivation, including greenhouse horticulture, is a 
key application segment for precision irrigation 
technologies, accounting for over 30% of the 
global market share (Bauchet & Baudry, 2010). 

 
Asia and India are among the fastest-growing 
regions for precision irrigation adoption in 
protected cultivation. With a large and expanding 
population, limited arable land, and increasing 
pressure on water resources, these regions are 
turning to protected cultivation as a means to 

ensure food security, increase agricultural 
productivity, and improve farmers' incomes 
(Kumar et al., 2018). Governments and private 
sector players are investing heavily in the 
development of greenhouse and precision 
irrigation infrastructure, supported by policies, 
subsidies, and research and development 
initiatives (Goel & Kumar, 2020). 
 

2. GLOBAL OVERVIEW OF PRECISION 
IRRIGATION IN PROTECTED 
CULTIVATION 

 
Protected cultivation, including greenhouse 
horticulture, has emerged as a key strategy for 
increasing agricultural productivity, quality, and 
profitability while minimizing the environmental 
impact of crop production (Nicola & Fontana, 
2014; Chai et al., 2016; Rouphael et al., 2008; 
Francescangeli et al., 2007). 
 

2.1 Scope of Precision Irrigation 
Technologies 

 

• The scope of precision irrigation in 
protected cultivation encompasses a wide 
range of technologies and practices, 
including: 

Review Article 
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• Drip irrigation systems that deliver water 
and nutrients directly to the root zone of 
plants through a network of pipes, emitters, 
and filters (Stanghellini et al., 2007). 

• Micro-sprinklers and foggers that 
provide localized irrigation and humidity 
control in greenhouses (Gómez & Izzo, 
2018). 

• Substrate moisture sensors that monitor 
the water content and availability in soilless 
growing media (Fernández et al., 2010). 

• Plant-based sensors that measure 
indicators of crop water status, such as 
stem diameter variations or leaf 
temperature (Schröder & Lieth, 2002). 

• Automated irrigation controllers that 
adjust irrigation schedules based on 
sensor feedback and weather data 
(Pardossi et al., 2004). 

• Fertigation systems that integrate 
precision irrigation with nutrient 

management to optimize crop nutrition 
(Jones, 2016). 

• Data analytics and decision support 
tools that help growers interpret sensor 
data and make informed irrigation 
decisions (Baille, 2001). 

 
2.2 Benefits of Precision Irrigation 
 
Studies have shown that precision irrigation can 
reduce water use by 40-70% compared to 
conventional irrigation methods, while               
increasing crop yields by 20-40% (Zegbe et al., 
2014; Magán et al., 2019; Savvas &                    
Gruda, 2018; Ullah et al., 2017). Precision 
irrigation also enables more efficient use of 
fertilizers, as nutrients can be delivered              
directly to the root zone in synchrony with plant 
uptake, reducing leaching and runoff (Rouphael 
& Colla, 2020; Bar-Tal et al., 2001; Qaryouti et 
al., 2007). 

 
Table 1. Global adoption of precision irrigation in protected cultivation by region and crop type 
 

Region Greenhouse 
Area (ha) 

Precision Irrigation 
Adoption (%) 

Main Crops 

Europe 175,000 60-80% Tomato, pepper, cucumber, herbs 
North America 25,000 50-70% Tomato, lettuce, berries, flowers 
Asia 450,000 30-50% Tomato, cucumber, strawberry, melon 
Latin America 20,000 20-40% Tomato, pepper, flower, medicinal plants 
Africa 30,000 10-30% Rose, tomato, cucumber, herbs 
Oceania 5,000 40-60% Tomato, cucumber, lettuce, herbs 

 

 
 

Fig. 1. Global precision irrigation market size and growth forecast by application, 2020-2026 
(USD Billion) 
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2.3 Enablers of Precision Irrigation 
Adoption 

 

Several factors are driving the adoption and 
scaling of precision irrigation in protected 
cultivation. These include: 
 

Government policies and subsidies that 
support the adoption of precision irrigation 
technologies, such as tax incentives, low-interest 
loans, or grants for equipment purchases 
(Jensen, 2002). 
 

Public-private partnerships that bring together 
research institutions, technology providers, and 
growers to develop and disseminate precision 
irrigation solutions adapted to local needs and 
conditions (Van Kooten et al., 2008). 
 

Capacity building and training programs that 
provide growers with the knowledge and skills 
needed to effectively implement and manage 
precision irrigation systems (Stafford, 2000). 
 

Research and development initiatives that 
focus on improving the performance, 
affordability, and user-friendliness of precision 
irrigation technologies, such as low-cost sensors, 
wireless communication protocols, or mobile 
apps for irrigation scheduling (Pathak et al., 
2018). 
 

Market-based incentives that reward growers 
for adopting precision irrigation and other 
sustainable practices, such as certification 
schemes, premium prices, or payments for 
ecosystem services (FAO, 2013). 
 

3. PRECISION IRRIGATION TECHNIQUES 
 

Precision irrigation in protected cultivation 
involves a range of techniques and technologies 
designed to deliver water and nutrients to crops 
in a highly controlled and efficient manner. These 
techniques can be broadly classified into three 
categories: drip irrigation, micro-irrigation, and 
substrate-based irrigation (Putra & Yuliando, 
2015; Liang et al., 2021). 
 

3.1 Drip Irrigation 
 

Drip irrigation involves the slow and frequent 
application of water and nutrients directly to the 
root zone of plants through a network of pipes, 
emitters, and drippers (Hanson et al., 1993; 
Singh et al., 2022; Singh et al., 2023). 
 

3.1.1 Surface drip irrigation 
 

Surface drip systems typically consist of the 
following components: 

A water source, such as a well, reservoir, or 
municipal supply, equipped with a pump and 
filtration system to prevent clogging of the 
emitters (Saikanth et al., 2023; Singh et al., 
2023). 
 

A main line that conveys the water from the 
source to the field, usually made of PVC or 
polyethylene pipes (Verma et al., 2023). 
 

Submains and laterals that distribute the water 
across the field, with emitters or drippers spaced 
at regular intervals to match the plant spacing 
(Kumar et al., 2023). 
 

Pressure regulators and valves that maintain a 
constant operating pressure and allow for zoning 
and automation of the irrigation system (Singh & 
Patel, 2022). 
 

Optional components such as fertilizer injectors, 
water meters, and sensors that enable fertigation 
and monitoring of the irrigation performance 
(Kumar et al., 2023). 
 

Surface drip irrigation is suitable for a wide range 
of protected cultivation systems, including row 
crops, raised beds, and potted plants (Burt & 
Styles, 2007; Lamm et al., 2012; Thompson et 
al., 2009). 
 

3.1.2 Subsurface drip irrigation 
 

Subsurface drip irrigation (SDI) is a variation of 
drip irrigation where the emitters are buried 
below the soil surface, typically at depths of 5 to 
45 cm depending on the crop root zone and soil 
properties (Camp, 1998; Singh, 2014). 
 

SDI offers several advantages over surface drip 
irrigation, including: 
 

Reduced evaporation losses, as the soil surface 
remains dry and the water is applied directly to 
the root zone (Enciso et al., 2015; Arbat et al., 
2013). 
 

Reduced weed growth, as the lack of surface 
wetting minimizes the germination and survival of 
weed seeds (Ayars et al., 2015). 
 

Improved fertilizer use efficiency, as the nutrients 
are placed in the root zone and are less prone to 
leaching or runoff (Hanson & May, 2004; Ayars 
et al., 1999). 
 

Enhanced crop quality, as the dry soil surface 
reduces the incidence of fruit rot and other 
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diseases associated with wet foliage (Lamm et 
al., 2007). 
 
Increased system longevity, as the buried 
emitters are protected from damage by UV 
radiation, pests, and cultural practices such as 
pruning or harvesting (Badr et al., 2016). 
 
However, SDI also presents some challenges 
and limitations, such as: 
 

Higher installation costs, as the emitters need to 
be buried and the system requires careful design 
and management to prevent clogging and ensure 
uniform water distribution (Hanson et al., 2004; 
Dabach et al., 2015). 
 
Difficulty in monitoring and maintaining the 
system, as the emitters are not visible and any 
leaks or malfunctions may go unnoticed until 
crop symptoms appear (Gonçalves et al., 2020; 
Grabow et al., 2006). 
 

Limited suitability for shallow-rooted crops or 
those with high water requirements, as the 
emitter depth and spacing may not match the 
crop needs (Lamm et al., 2012; Rijsberman, 
2006). 
 

Potential for root intrusion and clogging of the 
emitters, especially in fine-textured soils or with 
poor water quality (Molden et al., 2010; Fereres 
et al., 2011). 
 

3.2 Micro-sprinklers 
 

Micro-sprinklers are another type of precision 
irrigation technique used in protected cultivation, 
especially for crops with high water requirements 
or those grown in substrates with low water-
holding capacity (Surendran et al., 2015; Pereira 
et al., 2015). 
 

Compared to drip irrigation, micro-sprinklers 
have the following advantages: 
 

Better coverage and uniformity, as the water is 
distributed over a larger area and can reach the 
entire root zone of the crop (Allen et al., 1998; 
Hargreaves & Samani, 1985). 

Enhanced microclimate control, as the 
evaporative cooling effect of the mist can reduce 
the air and leaf temperature and increase the 
relative humidity in the greenhouse (Steduto et 
al., 2012; Fereres & Soriano, 2007). 
 

Reduced clogging and maintenance, as the 
larger nozzle size and higher flow velocity of 
micro-sprinklers make them less prone to 
blockage by particles or biofilm (Geerts & Raes, 
2009; Kang et al., 2000). 
 
Versatility and adaptability, as micro-sprinklers 
can be used for a wide range of crops and 
growing systems, from tree crops to potted 
plants, and can be easily moved or adjusted to 
match the changing crop needs (Costa et al., 
2007; Chai et al., 2014). 
 

To maximize the benefits and minimize the 
drawbacks of micro-sprinklers, some best 
practices include: 
 
Using micro-sprinklers with adjustable nozzles 
and flow rates, and matching the sprinkler type 
and spacing to the crop architecture and water 
needs (Howell, 2001). 
 

Installing the micro-sprinklers at the correct 
height and orientation, and using stakes or 
hangers to keep them stable and prevent 
damage to the crop (Lovelli et al., 2007). 
 

Scheduling the irrigation based on the crop 
evapotranspiration and substrate moisture, and 
using sensors or models to optimize the irrigation 
frequency and duration (Nagaz et al., 2012). 
 
Combining micro-sprinklers with other                
irrigation methods, such as drip or subsurface 
irrigation, to provide a more efficient and targeted 
water delivery to the root zone (Saleh & Ibrahim, 
2016). 
 

Implementing disease management strategies, 
such as pruning, ventilation, or fungicide 
applications, to reduce the risk of foliar diseases 
associated with micro-sprinkler irrigation (El-
Noemani et al., 2010). 

 

Table 2. Comparison of surface drip irrigation and traditional irrigation methods for tomato 
production in greenhouses 

 

Irrigation 
Method 

Water Use 
(L/plant/season) 

Yield 
(kg/plant) 

Water Use Efficiency 
(kg/m^3^) 

Surface Drip 150-200 8-12 40-60 
Furrow 400-600 6-10 10-20 
Sprinkler 300-500 7-11 15-30 
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Fig. 2. Schematic diagram of a subsurface drip irrigation system in a greenhouse. 
Source: (Surendran, 2015) 

 
Table 3. Comparison of micro-sprinkler and drip irrigation for rose production in greenhouses 
 

Irrigation 
Method 

Water Use 
(L/plant/day) 

Yield 
(stems/plant/year) 

Disease Incidence 
(%) 

Micro-sprinkler 2-4 200-250 10-20 
Drip 1-2 180-220 5-10 

. 

 
 

Fig. 3. Diagram of a capillary mat irrigation system for potted plants in a greenhouse 
 

3.3 Capillary Mats and Wicks 
 
Capillary mats and wicks are a precision 
irrigation technique that leverages the capillary 
action of water to deliver moisture directly to 
plant roots (Yenesew & Tilahun, 2009). These 
systems use thin, porous materials such as 
synthetic fibers or foam, which are placed under 
the plant containers and connected to a water 
reservoir (Kebe & Guttieri, 2020; Fathi & Tari, 
2016; Rai et al., 2005). 

Advantages of Capillary Mats and Wicks: 
 
Capillary mats and wicks offer several benefits 
for protected cultivation: 
 

1. Cost-effectiveness and simplicity: These 
systems require minimal equipment and 
can be easily installed and maintained by 
unskilled labor (Farooq et al., 2009). 

2. Water and nutrient efficiency: The capillary 
action delivers water directly to the root 
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zone, minimizing losses from evaporation 
or leaching (Sleper & Poehlman, 2006). 

3. Uniform moisture distribution: The porous 
material provides a consistent water supply 
to all plants, regardless of their position or 
size (Dodd, 2009). 

4. Reduced disease risk: The absence of 
water on the foliage and the use of well-
drained substrates minimize the growth 
and spread of pathogens (Hoddy, 2019). 

5. Suitability for small-scale growers: 
Capillary mats and wicks can be used in 
greenhouses, grow rooms, or even indoors 
without the need for electricity or plumbing 
(Mupambi et al., 2018). 

 

Limitations and Challenges of Capillary Mats 
and Wicks: 
 

Despite their advantages, capillary mats and 
wicks also have some constraints: 
 

1. Limited water holding capacity: The porous 
material can only store a finite amount of 
water and may require frequent refilling or 
a large reservoir for long-term use (Möller 
& Assouline, 2007). 

2. Sensitivity to water quality: The presence 
of salts, algae, or other contaminants in the 
water can clog the pores and reduce the 
capillary action over time (Castellano et al., 
2008). 

3. Difficulty in moisture control: The capillary 
action depends on substrate properties 
and evaporative demand, which may result 
in over- or under-watering if not properly 
managed (Gogo et al., 2012). 

4. Incompatibility with some growing media: 
Coarse or water-repellent substrates may 
not allow for good capillary contact or 
water retention (Ilić et al., 2015). 

 

Best Practices for Optimizing Capillary Mats 
and Wicks: 
 

To overcome these limitations and optimize the 
use of capillary mats and wicks, the following 
best practices are recommended: 
 

• Select high-quality, durable, and inert 
materials for the mats and wicks, such as 
polyester, polypropylene, or fiberglass. 
Avoid materials that can degrade or 
release toxins over time (Carmassi et al., 
2005). 

• Use compatible and well-draining growing 
media, such as peat moss, coir, perlite, or 
vermiculite. Ensure good contact between 

the mat/wick and the substrate (Saavoss et 
al., 2016). 

• Monitor the water level and quality in the 
reservoir regularly. Use filters, 
disinfectants, or nutrients as needed to 
maintain a clean and balanced supply 
(Baille et al., 1994). 

• Adjust the mat/wick size and spacing 
according to the plant size and water 
needs. Use multiple mats/wicks for larger 
containers or higher evaporative demand 
(Jones et al., 1991). 

• Combine capillary mats and wicks with 
other irrigation methods, such as drip or 
sprinklers, to provide additional water and 
nutrients as needed, especially during 
peak growth stages or stress periods 
(Gallardo et al., 2013; Stanghellini et al., 
2019). 

 

3.4 Hydroponic Systems with Precision 
Irrigation 

 
Hydroponic systems are a type of protected 
cultivation where plants are grown in a nutrient 
solution instead of soil (Nikolaou et al., 2019). 
The roots are either suspended directly in the 
solution or supported by an inert medium such as 
rockwool, perlite, or coconut fiber (Sharma et al., 
2018). 
 
Benefits of Hydroponic Systems: 
 
Compared to soil-based cultivation, hydroponic 
systems offer several advantages: 
 

1. Higher yields and quality: Plants have 
access to an optimal and balanced supply 
of water and nutrients, and are not limited 
by soil-borne pests or diseases (Liang, 
2018). 

2. Faster growth and shorter cycles: Plants 
can allocate more resources to vegetative 
and reproductive growth, and are not 
stressed by fluctuations in soil moisture or 
temperature (Ammad-Uddin et al., 2019). 

3. Greater water and nutrient efficiency: The 
nutrient solution is recirculated and reused, 
and nutrients are precisely delivered to the 
roots based on crop needs (Moon et al., 
2014). 

4. Reduced environmental impact: Closed-
loop systems minimize leaching and runoff 
of water and nutrients, and the absence of 
soil eliminates the need for fumigation or 
herbicides (Rodríguez et al., 2015). 
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Challenges and Requirements of Hydroponic 
Systems: 
 

Hydroponic systems also have some challenges 
and requirements compared to traditional 
cultivation: 
 

1. Higher initial and operational costs: The 
systems require specialized equipment, 
materials, and infrastructure, and consume 
more energy and labor (Xu et al., 2011). 

2. Greater technical complexity: Growers 
need to monitor and control multiple 
parameters such as pH, EC, temperature, 
oxygen, and nutrient ratios, and respond 
quickly to any deviations (Story & Kacira, 
2015). 

3. Dependence on external inputs: The 
systems rely on a constant supply of water, 
electricity, and fertilizers, and are 
vulnerable to disruptions or shortages 
(Wang et al., 2017). 

4. Limited buffer capacity: Plants are more 
sensitive to stresses or imbalances in the 
root zone, and any mistakes or failures can 
quickly lead to crop damage or loss (Baille 
et al., 2006; Katsoulas et al., 2015). 

 

Precision Irrigation Techniques in 
Hydroponic Systems: 
 

Common precision irrigation techniques used in 
hydroponic systems include: 
 

• Drip irrigation: The nutrient solution is 
delivered to each plant or container 
through a network of emitters and tubes, 
with the flow rate and frequency adjusted 
based on crop water use and growth stage 
(Nicolás-Cañas et al., 2021). 

• Ebb and flow irrigation: Plants are 
periodically flooded with the nutrient 
solution and then drained back to a 
reservoir, with the timing and duration of 
the cycles optimized based on substrate 
properties and crop requirements 
(Pardossi et al., 2006). 

• Nutrient film technique (NFT): Plants are 
grown in channels or tubes with a thin film 

of nutrient solution flowing over the roots, 
with the flow rate and composition adjusted 
based on crop uptake and environmental 
conditions (Incrocci et al., 2017). 

• Aeroponics: Roots are suspended in air 
and misted with the nutrient solution at 
regular intervals, with the droplet size and 
frequency optimized based on root 
morphology and crop water stress 
(Montesano et al., 2015). 

 
Monitoring and Control Tools for Hydroponic 
Systems: 
 
To optimize the performance of hydroponic 
systems, various sensors and control tools can 
be integrated: 

• pH and EC sensors: Measure the acidity 
and salinity of the nutrient solution, 
triggering the addition of acids, bases, or 
fertilizers to maintain optimal ranges for the 
crop (Gallardo et al., 2013). 

• Dissolved oxygen sensors: Monitor the 
oxygen level in the solution and activate 
aeration or oxygenation systems to prevent 
root hypoxia or anoxia (Abdel-Razzak et 
al., 2016). 

• Temperature sensors: Control the heating 
or cooling of the solution to maintain the 
optimal root zone temperature for crop 
growth and development (Sánchez-Molina 
et al., 2019). 

• Moisture sensors: Detect the water content 
or matric potential in the substrate and 
adjust irrigation frequency or duration to 
prevent over- or under-watering (Bueno-
Delgado et al., 2016). 

• Spectral sensors: Assess crop health and 
nutrient status based on leaf color or 
reflectance, guiding fertigation and crop 
management decisions (Gallardo et al., 
2006). 

• Automated control systems: Integrate 
sensor data and crop models to optimize 
irrigation and nutrient delivery based on 
environmental conditions and crop growth 
stage (Fernández et al., 2007). 

 

Table 4. Comparison of different hydroponic systems with precision irrigation for lettuce 
production 

 

Hydroponic 
System 

Water Use Efficiency 
(kg/L) 

Yield 
(kg/m^2^/cycle) 

Nutrient Use Efficiency 
(%) 

Drip irrigation 20-30 5-8 70-90 
Ebb and flow 15-25 4-7 60-80 
NFT 25-35 6-9 80-95 
Aeroponics 30-40 7-10 85-100 
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4. SENSORS AND MONITORING TOOLS 
 

Sensors and monitoring tools play a crucial role 
in precision irrigation systems for protected 
cultivation. They enable real-time monitoring of 
key parameters related to the crop, growing 
medium, and environment. This data empowers 
growers to make informed irrigation decisions 
based on the crop's actual water needs rather 
than fixed schedules or subjective assessments 
(van Iersel et al., 2013; Lea-Cox, 2012). 
Implementing a data-driven approach to irrigation 
management can lead to significant benefits: 
 

• Improved water and nutrient use efficiency 

• Increased crop yield and quality 

• Enhanced resource conservation 

• Reduced labor and energy costs (Jones, 
2004; Pardossi & Incrocci, 2011; Baille, 
2001) 

 

This section will explore some of the most 
common types of sensors used in precision 
irrigation systems. 
 

4.1 Soil Moisture Sensors 
 

Soil moisture sensors measure the water content 
or potential in the growing medium, which can be 
soil, soilless substrate, or hydroponic solution 
(Lea-Cox et al., 2018). They provide direct 
feedback on the moisture status of the root zone 
and can be used to automate irrigation events 
based on predefined thresholds (Chappell et al., 
2013). 
 

4.2 Types of Soil Moisture Sensors 
 

There are several types of soil moisture sensors 
available, each with its own advantages and 
limitations. The most common types include: 
 

4.2.1 Tensiometers 
 
Tensiometers measure the soil water potential, 
which represents the force required to extract 
water from the soil pores (Muñoz-Carpena et al., 
2005). They consist of a porous ceramic cup 
filled with water, connected to a pressure gauge 

or transducer. As the soil dries out, water is 
pulled out of the ceramic cup, creating a vacuum 
that is measured by the gauge (Marouelli & Silva, 
2007). 
 

Advantages of tensiometers: 
 

• Simple and reliable operation 

• Can be used to monitor soil moisture 
status and schedule irrigation based on 
crop- and soil-specific thresholds 
(Thompson et al., 2007) 

 

Limitations of tensiometers: 
 

• Limited measurement range (typically 0 to 
-85 kPa) 

• Require regular maintenance and refilling 
to function properly (Payero & Irmak, 2006) 

 

4.2.2 Capacitance and Time-Domain 
Reflectometry (TDR) Sensors 

 

Capacitance and TDR sensors are electronic 
devices that measure soil water content by 
detecting changes in the dielectric properties of 
the soil (Susha Lekshmi et al., 2014). 
Capacitance sensors measure the capacitance 
between two electrodes, which is proportional to 
the soil water content. TDR sensors emit an 
electromagnetic pulse through the soil and 
measure the time for the pulse to reflect back, 
which is related to the soil water content 
(Robinson et al., 2003). 
 

Advantages of capacitance and TDR sensors: 
 

• High accuracy across a wide range of soil 
moisture levels 

• Less affected by soil salinity or 
temperature compared to tensiometers 

• Suitable for automated irrigation control 
(Fares & Polyakov, 2006) 

 
Limitations of capacitance and TDR sensors: 
 

• Higher cost compared to tensiometers 

• Require a power source and data logger 
for operation (Bittelli, 2010) 

 
The table below compares the key characteristics of tensiometers, capacitance sensors, and 
TDR sensors: 
 

Sensor Type Measurement Range (kPa) Accuracy (%) Cost (USD) Maintenance 

Tensiometer 0 to -85 ±10 50-200 High 
Capacitance 0 to -1000 ±2 100-500 Low 
TDR 0 to -1500 ±1 500-2000 Low 

Sources: Charlesworth, 2005; Muñoz-Carpena, 2004; Leib et al., 2003 
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4.3 Plant Water Status Sensors 
 

Plant water status sensors measure the water 
content, potential, or stress level directly in plant 
tissues such as leaves, stems, or fruits (Jones, 
2004). They provide valuable information on the 
crop's actual water needs and can help optimize 
irrigation scheduling based on the plant's 
physiological responses to the environment 
(Fernández, 2014). Common plant water status 
sensors include: 
 

4.3.1 Leaf and stem water potential sensors 
 

Leaf and stem water potential sensors measure 
the negative pressure or tension in the plant 
xylem, which reflects the plant's water status 
(Hsiao, 1990). The most widely used method is 
the pressure chamber, where a leaf or stem 
sample is placed in a sealed chamber and 
pressurized until xylem sap appears at the cut 
surface. The pressure required to force the sap 
out is equal to the water potential of the sample 
(Scholander et al., 1965). 
 

Advantages of leaf and stem water potential 
sensors: 
 

• Direct measurement of plant water status 

• Can be used to detect crop water stress 
and schedule irrigation accordingly 
(Shackel et al., 1997) 

 

Limitations of leaf and stem water potential 
sensors: 

• Destructive measurement (requires leaf 
or stem samples) 

• Labor-intensive and time-consuming 

• Not suitable for automated irrigation 
control (Jones, 2007) 

 
4.3.2 Sap flow sensors 
 
Sap flow sensors measure the rate and direction 
of water movement in the plant stem, which is 
closely related to transpiration and water uptake 
(Smith & Allen, 1996). They use heat as a               
tracer and measure the velocity of a heat pulse 
or the temperature difference between two 
probes inserted into the stem (Burgess et al., 
2001). 
 
Advantages of sap flow sensors: 
 

• Non-destructive and continuous 
measurement of plant water use 

• Can be used to estimate crop water 
requirements and optimize irrigation 
scheduling (Fernández et al., 2008) 

 
Limitations of sap flow sensors: 
 

• Indirect measurement of plant water status 

• Calibration required for each plant species 
and growing condition 

• High cost and technical complexity (Steppe 
et al., 2010) 

 

 
 

Fig. 4. Example of a sap flow sensor installed on a tomato plant stem in a greenhouse 
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Fig. 5. Schematic diagram of a soil moisture-based irrigation control system. 
 
4.3.3 Microclimate sensors  
 
Microclimate sensors are devices that measure 
the environmental conditions in the plant canopy 
or root zone, such as temperature, humidity, 
light, and CO2. Microclimate sensors provide 
information on the factors that influence the crop 
water use and can be used to adjust the irrigation 
and ventilation systems to optimize the growing 
conditions.  
 

4.4 There are Several Types of 
Microclimate Sensors, Including: 

 
4.4.1 Temperature and humidity sensors  
 
Temperature and humidity sensors are devices 
that measure the air or substrate temperature 
and relative humidity, which affect the crop 
evapotranspiration and water demand. 
Temperature sensors include thermocouples, 
thermistors, and infrared sensors, while humidity 
sensors include capacitive, resistive, and dew 
point sensors. Temperature and humidity 
sensors are widely available and relatively 
inexpensive, but they require proper placement 

and shielding to avoid errors due to radiation or 
air movement. 
 

4.5 Evapotranspiration-based Irrigation 
Scheduling Methods 

 
Evapotranspiration (ET) is the combined process 
of water loss from the crop and soil through 
evaporation and transpiration. ET-based 
irrigation scheduling methods estimate crop 
water requirements using the following key 
parameters: 
 

• Reference evapotranspiration (ETo): 
The ET rate of a reference crop (usually 
grass or alfalfa) under standard conditions, 
estimated using weather data and 
standardized equations such as the FAO 
Penman-Monteith method (Allen et al., 
1998; Pereira et al., 2015). 

• Crop coefficient (Kc): A dimensionless 
factor that relates the actual crop ET to the 
reference ET, based on crop type, growth 
stage, and management practices 
(Doorenbos & Pruitt, 1977; Pereira et al., 
2021). 
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Fig. 6. Example of a sensor-based automated irrigation controller for greenhouse 

Some common irrigation scheduling and control methods are described below. 
 

• Effective rainfall (Re): The portion of 
rainfall available for crop use after 
accounting for losses due to runoff, deep 
percolation, and canopy interception 
(Dastane, 1978; Patwardhan et al., 1990). 

• Irrigation efficiency (Ei): The ratio of 
water beneficially used by the crop to the 
water applied by the irrigation system, 
which depends on system design, 
maintenance, and operation (Burt et al., 
1997; Hsiao et al., 2007). 

 
The basic equation for calculating the irrigation 
requirement (IR) using the ET-based method is: 
Copy 
 

IR = (ETo × Kc - Re) / Ei 
 
For example, if the reference ET is 5 mm/day, 
the crop coefficient is 1.2, the effective rainfall is 
2 mm/day, and the irrigation efficiency is 0.8, the 
irrigation requirement would be: 
Copy 
 
IR = (5 mm/day × 1.2 - 2 mm/day) / 0.8 = 5 
mm/day 
 
This means the crop would need to be irrigated 
with 5 mm of water per day to meet its water 
requirements under the given conditions. 
 

Advantages of ET-based irrigation 
scheduling: 
 

• Based on actual crop water use and 
climatic conditions, rather than fixed 
schedules or subjective judgments 

• Can be adapted to different crops, growth 
stages, and management practices using 
specific crop coefficients and adjustment 
factors 

• Can be automated using weather stations, 
sensors, and computer models to calculate 
and implement irrigation requirements in 
real-time (Gu et al., 2020; Mun et al., 2015) 

 
Limitations and challenges of ET-based 
methods: 
 

• Require accurate and reliable weather 
data, which may not be available or 
representative of specific site conditions 

• Assume crop coefficients and other 
parameters are constant and uniform, 
which may not be true for all crops, 
varieties, and management practices 

• Do not account for spatial variability of soil 
moisture and crop water status within the 
field, which can lead to over- or under-
irrigation in some areas (Bockhold et al., 
2011; Nahar et al., 2022) 
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The following table provides an example of 
typical crop coefficients (Kc) for tomato at 
different growth stages: 

 
Growth Stage Duration (days) Kc 

Initial 30 0.6 
Development 40 0.8 
Mid-season 50 1.2 
Late season 30 0.9 

Source: Allen et al., 1998 

 
4.6 Soil Moisture-based Irrigation 

Scheduling Methods 
 
Soil moisture-based irrigation scheduling 
methods use measurements or estimates of soil 
water content or potential to determine when and 
how much to irrigate (Evett & Parkin, 2005). 
These methods are based on the principle that 
crop water uptake and growth are directly related 
to water availability in the root zone and that 
maintaining soil moisture within an optimal range 
can maximize crop yield and quality (Thompson 
et al., 2007). 

 
Several soil moisture-based irrigation scheduling 
methods are available, including: 

 
1. Feel and appearance method: A 

qualitative method that involves observing 
and feeling soil texture, color, and 
consistency to estimate soil moisture status 
and irrigation need (USDA, 1998). 

2. Gravimetric method: A quantitative 
method that involves taking soil samples, 
weighing them before and after drying, and 
calculating soil water content as the               
ratio of water mass to dry soil mass (Black, 
1965). 

3. Soil moisture sensors: Electronic devices 
that measure soil water content or potential 
using various principles such as resistance, 
capacitance, or reflectometry, providing 
continuous, real-time data on soil moisture 
status (Muñoz-Carpena et al., 2004; 
Pardossi et al., 2009). 

4. Soil water balance models: Computer 
programs that simulate soil water dynamics 
based on inputs of climate, soil, crop, and 
irrigation data, estimating soil moisture 
content and irrigation requirements over 
time (Feddes et al., 1974; Bastiaanssen et 
al., 2007). 

 
These methods allow growers to monitor soil 
moisture status and make informed decisions 

about when and how much to irrigate based on 
crop- and soil-specific thresholds. By maintaining 
optimal soil moisture levels, growers                       
can promote crop growth and quality while 
minimizing water losses and environmental 
impacts. 

 
Fig. 7 illustrates a precision irrigation and 
fertigation system in a Dutch tomato greenhouse, 
which integrates soil moisture sensors,                  
weather data, and computerized control to 
optimize water and nutrient management based 
on crop requirements and environmental 
conditions. 

 
4.7 Microclimate Sensors for Precision 

Irrigation 
 
Microclimate sensors measure environmental 
conditions in the plant canopy or root zone, such 
as temperature, humidity, light, and CO2. These 
sensors provide valuable information on factors 
influencing crop water use and can be used to 
adjust irrigation and ventilation systems to 
optimize growing conditions. Several types of 
microclimate sensors are commonly used in 
precision irrigation systems: 

 
4.7.1 Temperature and humidity sensors 

 
Temperature and humidity sensors measure air 
or substrate temperature and relative humidity, 
which affect crop evapotranspiration and water 
demand. Temperature sensors include 
thermocouples, thermistors, and infrared 
sensors, while humidity sensors include 
capacitive, resistive, and dew point sensors 
(Castañeda-Miranda & Castaño, 2017). These 
sensors are widely available and relatively 
inexpensive but require proper placement and 
shielding to avoid errors due to radiation or air 
movement. 

 
4.7.2 Solar radiation and PAR sensors 

 
Solar radiation and photosynthetically active 
radiation (PAR) sensors measure the amount 
and quality of light available for crop growth and 
photosynthesis. Solar radiation sensors include 
pyranometers and quantum sensors, while PAR 
sensors include quantum meters and line 
quantum sensors (Baille et al., 2001; Valiente-
Banuet & Gutiérrez-Ochoa, 2016). These 
sensors are important for estimating crop water 
use and potential yield and for controlling 
supplemental lighting and shading                    
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systems in greenhouses. However, they are 
more expensive than temperature and              
humidity sensors and require regular calibration 
and maintenance to ensure accurate 
measurements. 
 

Integrating these sensors with irrigation 
scheduling and control systems can help growers 
optimize crop water use, yield, and quality while 
minimizing resource waste and environmental 
impact. 

 
 

Fig. 7. Schematic diagram of a precision irrigation and fertigation system in a Dutch tomato 
greenhouse 

 
 

 
 
Fig. 8. Example of a precision irrigation and fertigation system in a Japanese strawberry high 

tunnel 
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5. CONCLUSION  
 
Precision irrigation is a key technology and 
approach for the sustainable intensification and 
resilience of protected cultivation systems, which 
can optimize the use of water, nutrients, energy, 
and other resources, and achieve the desired 
crop yield, quality, and profitability, while 
minimizing the environmental and social impacts. 
The adoption and scaling of precision irrigation in 
protected cultivation have been driven by the 
increasing population, urbanization, and income 
growth, the declining water and land resources, 
the changing climate and market conditions, and 
the advancing technologies and innovations. 
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