
++ DevOps Engineer;
*Corresponding author: E-mail: ajay@achavacloud.com;

Cite as: Chava, Ajay. 2024. “CI/CD and Automation in DevOps Engineering”. Asian Journal of Research in Computer Science
17 (11):73-80. https://doi.org/10.9734/ajrcos/2024/v17i11520.

Asian Journal of Research in Computer Science

Volume 17, Issue 11, Page 73-80, 2024; Article no.AJRCOS.125615
ISSN: 2581-8260

CI/CD and Automation in DevOps
Engineering

Ajay Chava a++*

a Eficens Systems Inc, USA.

Author’s contribution

The sole author designed, analysed, interpreted and prepared the manuscript.

Article Information

DOI: https://doi.org/10.9734/ajrcos/2024/v17i11520

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers,
peer review comments, different versions of the manuscript, comments of the editors, etc are available here:

https://www.sdiarticle5.com/review-history/125615

Received: 09/09/2024
Accepted: 13/11/2024
Published: 20/11/2024

ABSTRACT

The article examines the principles and best practices of implementing Continuous Integration and
Continuous Deployment (CI/CD) within DevOps engineering. It explores how CI/CD pipelines,
automated testing, version control, and deployment processes can accelerate software
development and improve product quality. The manuscript analyzes key tools such as Jenkins,
GitLab, and Travis CI, and discusses critical security measures for safeguarding code and
infrastructure. By integrating CI/CD into DevOps workflows, teams can enhance efficiency, reduce
time to market, and minimize errors, all while ensuring a scalable and secure development process.

Keywords: CI/CD; DevOps engineering; automation; continuous integration; continuous deployment;
automated testing; version control; software security; CI/CD tools; CI/CD pipelines.

1. INTRODUCTION

In today's world of information technology, the
speed of software development and deployment

plays a crucial role in the competitiveness of
companies. With the increasing complexity of
software and growing user expectations,
traditional development methods are becoming

Minireview Article

https://doi.org/10.9734/ajrcos/2024/v17i11520
https://www.sdiarticle5.com/review-history/125615

Chava; Asian J. Res. Com. Sci., vol. 17, no. 11, pp. 73-80, 2024; Article no.AJRCOS.125615

74

less effective, leading to delays in the release of
new features and a decline in the overall quality
of the final product. As a result, DevOps
practices, which focus on integrating
development and operations processes, are
gaining significant importance. A key component
of DevOps engineering is the implementation of
CI/CD (Continuous Integration/Continuous
Delivery) practices, which ensure continuous
integration and delivery of software.

The relevance of this topic is driven by the need
to accelerate and automate development
processes, which requires efficient management
of code changes, automated testing, and reliable
deployment. The application of CI/CD allows
developers to quickly adapt to changing market
demands and improve the quality of software
products by identifying errors at early stages of
development.

The aim of this work is to study the principles and
best practices of CI/CD in the context of DevOps
engineering, analyze existing tools and
technologies for implementing these practices,
and discuss security issues in the automation of
software development and deployment
processes.

2. PRINCIPLES AND BEST PRACTICES
OF CI/CD IN DEVOPS ENGINEERING

CI/CD (Continuous Integration/Continuous
Deployment) is a concept that unites continuous
integration and continuous delivery. While these
two components are closely related, each has its
own distinct features and goals. Below, we will
explore these concepts in detail.

Continuous Integration (CI) is a software
development practice where team members
regularly integrate their work into the shared
codebase, often several times a day. Each time a
developer adds changes, an automated build
and testing process is triggered. This process
ensures that new changes do not conflict with the
existing code, thereby preventing integration
errors.

CI allows teams to identify and resolve potential
issues promptly, maintaining the relevance of the
code throughout the development process.
Without CI, code developed by different team
members can become highly unsynchronized,
ultimately affecting quality and performance. This
occurs because, without regular checks and
tests, developers might work on code for

extended periods before merging it with the main
branch. If conflicts arise during merging,
significant time may be required to resolve these
issues, potentially slowing down the entire
development process (Thatikonda, 2023).

Despite the potential inconveniences associated
with fixing integration errors, the regular use of CI
provides significant benefits. Teams can quickly
address emerging issues, automate testing, and
minimize the risks of major integration failures.

Continuous Delivery (CD) is the logical extension
of the CI process. After passing tests within CI,
the code is deployed in a staging environment. At
this stage, additional automated tests, including
integration checks, are conducted. If all tests
pass, the code is considered ready for production
deployment, but it is usually released to the
production environment only after manual testing
and approval. CD helps accelerate the
deployment process and reduce errors through
automated checks.

In addition to continuous delivery, there is
another approach called Continuous
Deployment, which goes beyond CD. In this
case, if all tests pass successfully, the code is
automatically deployed to the production
environment.

The primary advantage of continuous
deployment is that users receive the latest code
updates that have passed all necessary tests
and checks.

The value of CI/CD lies in automating the entire
development cycle, from writing code to its final
deployment. This approach allows developers to
implement new features and updates more
quickly, enabling the product to respond more
rapidly to user demands. Moreover, thanks to the
automated testing and integration process,
defects and errors are identified early, reducing
downtime and improving the reliability and quality
of the final product.

CI/CD also enhances collaboration between
development teams and other stakeholders,
enabling rapid feedback and allowing the product
to be adapted to real user needs. Thus, this
methodology becomes an essential tool for those
striving for high development speed and flawless
software quality (Bobbert and Chtepen, 2021).

The CI/CD process includes several key
components that ensure the efficiency of the

Chava; Asian J. Res. Com. Sci., vol. 17, no. 11, pp. 73-80, 2024; Article no.AJRCOS.125615

75

entire development cycle. These elements cover
all stages, from development to deployment of
the software product. Incorporating these
elements into the DevOps workflow can
significantly improve the performance and quality
of software delivery. For clarity, the main aspects
of CI/CD processes are presented in Table 1.

Integration of CI/CD with other DevOps
practices, such as early-stage security and rapid
feedback, helps create more scalable and secure
applications, which is particularly important given
the growing complexity of modern software
solutions (Bobbert and Chtepen, 2021). For
successful CI/CD implementation, it is crucial to
consider key principles that ensure the efficiency
and stability of the process.

When transitioning to automated CI/CD, many
organizations move away from slow manual
methods towards faster and more efficient
solutions. This often results in a significant
increase in release frequency, which previously
might have occurred only a few times a year but

now takes place weekly or even daily. It is
important to base the creation of the first CI/CD
pipeline on the real needs of your business.
Implement the necessary set of tools and
resources to minimize the risk of project
overload.

Next, the foundation of the CI/CD pipeline should
be built from basic elements that will serve as the
groundwork for further development. These
elements include continuous integration, which
involves code merging, building, and automated
testing, as well as continuous testing at each
stage, ensuring early and frequent quality
checks. Continuous delivery allows updates to be
deployed to the target environment, while
continuous deployment automates this process
without the need for manual intervention. An
important component is continuous monitoring,
which provides oversight of your application's
performance and infrastructure stability. Start by
automating processes, gradually introducing
new tools and approaches as the pipeline
evolves.

Table 1. Main Aspects of CI/CD Processes (Bobbert and Chtepen, 2021)

Aspects of
CI/CD Processes

Description of Key Features

Unified Code
Repository

This repository should contain all the resources necessary for building the
project, including source code, libraries, database structures, configuration
files, and version control. It should also include scripts for testing and building
to simplify the automation process.

Regular Merges
with the Main
Branch

Code should be regularly integrated into the main branch of the project. This
minimizes the risk of conflicts during code merging and simplifies the process
of tracking changes. The more frequently integration occurs, the more stable
and predictable the development becomes.

Build Automation To successfully implement CI/CD, scripts that automate the application build
process, including all stages of code compilation and packaging, are
necessary. This accelerates the process and reduces the likelihood of errors
due to human factors.

Automated
Testing

Automated testing is an integral part of CI/CD, allowing for error detection
during the build stage. The use of static and dynamic tests before compilation
ensures high quality and security of the final product.

Frequent
Iterations and
Updates

Regular, small code updates help to quickly identify and fix errors, and also
prevent the accumulation of technical debt. This also facilitates rollback
processes in case of unforeseen issues.

Stable Testing
Environments

For proper testing of new code versions, an environment that closely
resembles the production environment is required. This allows potential
problems to be identified and resolved before they reach actual production.

Transparency and
Accessibility

All development team members should have access to up-to-date information
about the project and changes in the repository. This enhances team
collaboration and enables a prompt response to any emerging issues.

Planned and
Secure
Deployments

Deployment procedures should be as automated and secure as possible,
allowing them to be carried out at any time with minimal risks. Regular updates
with small changes reduce the likelihood of problems and simplify the rollback
process.

Chava; Asian J. Res. Com. Sci., vol. 17, no. 11, pp. 73-80, 2024; Article no.AJRCOS.125615

76

The third aspect is the careful formation of the
team responsible for CI/CD. This will enable you
to experiment and optimize processes while
minimizing risks. As experience is gained, you
can move on to more complex tasks and
integrate other components. Special attention
should be given to automated testing in the early
stages, which will ensure the high quality and
stability of the CI/CD pipeline (Debroy et al.,
2018).

To better understand the practical application of
CI/CD, let's consider an approximate operation of

the CI/CD pipeline, presented schematically in
Fig. 1.

Thus, the CI/CD pipeline ensures a continuous
process of code development, testing, and
deployment, enabling teams to deliver
software products quickly and with
high quality. Organizations that implement the
CI/CD methodology report significant
improvements in the quality and speed of
development. The main advantages are
described in Table 2.

Fig. 1. Approximate operation of the CI/CD pipeline (CI/CD, 2024)

 Running tests

Automatic

testing of code
for problem

places

Automatic

creation of a
new assembly

Fixing

changes

Modification

by the
developer of

the tests

If the tests or

analysis fail, the
code is returned to
the developer for

correction

If all checks

pass, the build
is considered

successful

Chava; Asian J. Res. Com. Sci., vol. 17, no. 11, pp. 73-80, 2024; Article no.AJRCOS.125615

77

Table 2. The Main Advantages of the Implementation of CI/CD Methodologies (Fluri, 2023)

Advantage Description of Advantage

User Satisfaction Reducing errors and improving product quality increases customer
trust and satisfaction, which directly impacts the company's
reputation.

Reduced Time to Market Fast delivery of new features and products gives the company a
competitive advantage and allows for quicker achievement of
commercial goals.

Reduction in Incidents Regular testing and frequent small updates help avoid crisis
situations, making the development process easier and reducing
team stress.

More Accurate Planning Automation and predictability of the deployment process help meet
deadlines and reduce uncertainty in the project.

Resource Allocation Automating routine tasks allows developers to focus on more
creative and complex tasks, increasing their productivity.

Reduced Employee Burnout The CI/CD process reduces the workload on the team, decreasing
the likelihood of burnout and increasing overall job satisfaction (Fluri
et al. 2023).

3. DESIGNING AND OPTIMIZING CI/CD

PIPELINES

The CI/CD process consists of sequential steps
aimed at efficiently integrating, testing, and
deploying software code. For successful
implementation of the CI/CD process, it is
essential to consider the following key elements:

1. Regular Code Commits: Developers
regularly commit changes to the repository
using version control systems like GitHub.
Each new change triggers the CI
procedure.

2. Code Analysis with Static Tools: The use
of static analysis tools helps assess code
quality at early stages of development,
preventing potential errors.

3. Automated Testing: Before final assembly,
the code goes through automated tests,
including unit and integration testing. The
main goal is to create a standardized
process that automates the development,
testing, and assembly of software
products.

4. Transition to Continuous Delivery After
Integration: Continuous delivery begins
once the continuous integration stage is
complete. This ensures that all code
changes are automatically implemented in
the required environments.

5. Sequential Testing and Code Release: The
CI/CD pipeline provides the capability to
send updated code through a series of
testing stages, such as building, release
preparation, and deployment, ultimately
leading to a product ready for use.

6. Quality Control at Every Stage: Each stage
of the CI/CD pipeline serves as a
checkpoint for verifying specific code
characteristics. As the code progresses
through the pipeline, it undergoes
increasingly rigorous scrutiny, which helps
enhance its quality.

7. Immediate Feedback on Test Results: Test
results are provided instantly, and if an
error occurs at any stage, further code
assembly and deployment are halted.

8. Flexibility and Adaptability: The CI/CD
process must be customizable to
accommodate the specific needs of the
organization, such as quality, security, and
performance requirements. Regular review
and updating of the process help improve
its efficiency (Zampetti F. et al., 2021).

The Continuous Integration and Continuous
Delivery (CI/CD) pipeline begins with the source
code management stage, which can also be
referred to as version control. At this stage, the
source code is systematically organized and
stored, with an emphasis on version tracking.
Developers create and modify code on their local
machines and then commit it to a version control
system such as Git or Subversion. This process
ensures meticulous tracking of every change in
the code, allowing for easy restoration of
previous versions or rollback of changes if
necessary.

A key element at this stage is the use of
branching strategies, such as GitFlow or trunk-
based development. These methods allow
development teams to work concurrently on

Chava; Asian J. Res. Com. Sci., vol. 17, no. 11, pp. 73-80, 2024; Article no.AJRCOS.125615

78

different parts of the project without the risk of
conflict or overwriting each other's changes.
Additionally, they facilitate the successful
development of new features, bug fixes, and
experimental research without compromising the
stability of the main codebase.

In the CI/CD process, the source code
management stage also serves as the starting
point for initiating the entire pipeline, typically
triggered by a new commit or the creation of a
pull request. Moreover, initial quality checks,
such as linting or syntax verification, can be
performed at this stage to ensure the code
adheres to defined standards and stylistic rules.

Next, at the build stage, the source code is
transformed into a ready-to-run product in the
target environment. This process depends on the
type of application. For example, for Java
applications, it involves compiling the code into
bytecode and packaging it into a JAR or WAR
file. For applications intended for a Docker
environment, a Docker image is
created based on the Dockerfile. The build
stage also includes tasks such as dependency
resolution, transpilation, and resource
bundling, resulting in an artifact ready for
deployment.

An integral part of this stage is the execution of
preliminary tests, including unit tests and static
code analysis. These checks ensure the
correctness and quality of individual application
components. If the build or testing process fails,
the pipeline is halted, and developers are
notified, allowing them to quickly address the
issue and prevent more serious errors in the
future.

At the testing stage, the application undergoes
comprehensive automated testing to ensure it
meets all specified requirements. This stage
verifies the quality of the build before it becomes
available to end users. The tests conducted may
include integration tests, functional checks,
performance tests, and security tests, providing a
thorough assessment of the application's
operational capabilities.

The final stage of the CI/CD pipeline is
deployment, where the application is
implemented in the production environment,
making it accessible to users. This process is
automated and depends on the specifics of the
application and production environment. For
example, it could involve deploying a Docker

container in Kubernetes or updating a web
application on a cloud service like AWS. After
deployment, additional checks are performed to
confirm the application's proper functioning in the
production environment, thereby completing the
CI/CD cycle.

To optimize CI/CD processes, it is recommended
to centralize the storage of all source codes and
configurations, fully automate all stages of the
pipeline, use a sequential build process,
parallelize tasks, effectively manage build
artifacts and environment configurations, and
implement comprehensive testing and
monitoring. Another important aspect is fostering
a culture of collaboration and ensuring security at
all stages of development (CI/CD Process,
2024).

4. TOOLS AND TECHNOLOGIES FOR
IMPLEMENTING CI/CD STRATEGIES

A variety of tools are widely used for effective
management of software integration, delivery,
and deployment processes. These tools support
the execution of continuous integration and
delivery (CI/CD) pipelines, with each having its
own strengths and weaknesses. The choice of a
particular tool depends on several factors,
including ease of integration, scalability, and
compatibility with different development systems
(Indriyanto et al., 2023). Let’s explore some of
the key tools commonly used in CI/CD
processes:

Jenkins: Jenkins is one of the most widely used
open-source automation servers designed to
support continuous integration and delivery
processes. This server is notable for its flexibility,
achieved through an extensive library of plugins
that allow Jenkins to be adapted to virtually any
CI/CD need. Its versatility and expandability
make it highly popular among developers.

Travis CI: Travis CI is a cloud-based service
popular among developers of open-source
projects. It supports various build environments
and programming languages and integrates
closely with the GitHub platform. Travis CI allows
applications to be tested and deployed without
significant configuration changes, simplifying the
development and deployment processes (Mowad
et al., 2022).

GitLab CI/CD: Integrated into the GitLab
ecosystem, the CI/CD tool provides means for
continuous integration and delivery within both

Chava; Asian J. Res. Com. Sci., vol. 17, no. 11, pp. 73-80, 2024; Article no.AJRCOS.125615

79

the enterprise and community versions of GitLab.
A particular advantage of GitLab CI/CD is its
deep integration with other GitLab services,
enabling users to perform CI/CD processes
without relying on external solutions. These
processes are configured through the `.gitlab-
ci.yml` file located in the root directory of the
repository.

CircleCI: CircleCI is a powerful platform that
provides continuous integration and
delivery in both local and cloud environments.
Known for its efficiency and speed due to high-
speed source code compilation and
dependency caching, CircleCI allows the
configuration of processes to implement complex
CI/CD pipelines and supports work with Docker
containers.

Bamboo: Developed by Atlassian, Bamboo is a
continuous integration and deployment solution
that integrates seamlessly with other
Atlassian products, such as Bitbucket and Jira
Software. In addition to standard
continuous integration features, Bamboo offers
tools for delivery, making it useful for more
complex and multi-tiered projects (Cowell et al.,
2023).

5. CONCLUSION

In conclusion, it can be stated that CI/CD and
automation play a crucial role in modernizing
software development and operations processes
within DevOps engineering. The implementation
of CI/CD pipelines significantly enhances the
speed and quality of development, reduces time
to market, and decreases the number of errors
through automated testing and checks. The
analysis of tools and technologies demonstrates
that successful CI/CD implementation requires a
comprehensive approach, including the correct
selection of tools, careful process design, and
ensuring security at all stages. As a result,
integrating CI/CD into DevOps not only
contributes to the creation of higher-quality and
more reliable products but also improves team
collaboration, thereby increasing overall
development efficiency.

DISCLAIMER (ARTIFICIAL INTELLIGENCE)

Author(s) hereby declare that NO generative AI
technologies such as Large Language Models
(ChatGPT, COPILOT, etc) and text-to-image
generators have been used during writing or
editing of this manuscript.

COMPETING INTERESTS

Authors have declared that they have no known
competing financial interests or non-financial
interests or personal relationships that could
have appeared to influence the work reported in
this paper.

REFERENCES

An introduction to DevOps and CI/CD. [Electronic

resource] Access mode:
https://jfrog.com/devops-tools/article/an-
introduction-to-devops-and-ci-cd /
(accessed 08/23/2024).

Bobbert, Y., & Chtepen, M. (2021). Research
findings in the domain of CI/CD and
DevOps on security compliance. In
Strategic Approaches to Digital Platform
Security Assurance (pp. 286–307). IGI
Global.

CI/CD Process: Flow, Stages, and Critical Best
Practices. [Electronic resource] Access
mode: https://codefresh.io/learn/ci-cd-
pipelines/ci-cd-process-flow-stages-and-
critical-best-practices / (accessed
08/23/2024).

Cowell, C., Lotz, N., & Timberlake, C. (2023).
Automating DevOps with GitLab CI/CD
pipelines: Build efficient CI/CD pipelines to
verify, secure, and deploy your code using
real-life examples. Packt Publishing.

Debroy, V., Miller, S., & Brimble, L. (2018).
Building lean continuous integration and
delivery pipelines by applying DevOps
principles: A case study at Varidesk. In
Proceedings of the 2018 26th ACM Joint
Meeting on European Software
Engineering Conference and Symposium
on the Foundations of Software
Engineering (pp. 851–856). ACM.

Fluri, J., Fornari, F., & Pustulka, E. (2023).
Measuring the benefits of CI/CD
practices for database application
development. In 2023 IEEE/ACM
International Conference on Software and
System Processes (ICSSP) (pp. 46–57).
IEEE.

Indriyanto, R., & Purnama, D. G. (2023). CI/CD
implementation application deployment
process academic information system
(Case study of Paramadina University).
Jurnal Indonesia Sosial Teknologi, 4(9),
1503–1516.

Mowad, A. M., Fawareh, H., & Hassan, M. A.
(2022). Effect of using continuous
integration (CI) and continuous delivery

Chava; Asian J. Res. Com. Sci., vol. 17, no. 11, pp. 73-80, 2024; Article no.AJRCOS.125615

80

(CD) deployment in DevOps to reduce the
gap between developer and operation. In
2022 International Arab Conference on
Information Technology (ACIT) (pp. 1–8).
IEEE.

Thatikonda, V. K. (2023). Beyond the buzz: A
journey through CI/CD principles and best
practices. European Journal of Theoretical

and Applied Sciences, 1(5), 334–
340.

Zampetti, F., et al. (2021). CI/CD pipelines
evolution and restructuring: A qualitative
and quantitative study. In 2021 IEEE
International Conference on Software
Maintenance and Evolution (ICSME) (pp.
471–482). IEEE.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of the publisher and/or the editor(s). This publisher and/or the editor(s) disclaim responsibility for
any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

© Copyright (2024): Author(s). The licensee is the journal publisher. This is an Open Access article distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:

https://www.sdiarticle5.com/review-history/125615

https://www.sdiarticle5.com/review-history/125615

