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Abstract

Aims/ Objectives: To formulated a linear regression model to capture the relationship between
tea production and climatic variables in terms of ARIMA.
Place and Duration of Study: Department of Mathematics and Actuarial Science, Catholic
University of Eastern Africa, Nairobi, Kenya, between June 2019 and April 2021.
Methodology: The study used time-series data for mean annual temperature, mean annual
rainfall, humidity, solar radiation, and NDVI, collected from six counties, namely Embu,
Kakamega, Kisii, Kericho, Meru, and Nyeri.
Results: The study findings noted that there is a presence of trend and seasonality for all the
data. The scatter plot matrix for all the climatic variables for all the counties under the study
indicated that tea production has a linear relationship with most climatic variables. Model fit
of the data indicated statistical significance when tea production data is differenced. A second
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linear model with tea production data deseasoned has mixed results in terms of a significance
test. The variation of independent variables with tea production yielded very low values,
suggesting that the data used has many variabilities.
Conclusion: The study findings show the climatic variables can be used to forecast tea
production.
Recommendation: Future studies may combine the analysis with other statistical modeling
procedures such as the GARCH models.

Keywords: Climatic variability; Time-Series; ARIMA.

2010 Mathematics Subject Classification: 53C25; 83C05; 57N16.

1 Introduction

The climatic variability changes in the world impact the growth of cash crops, and Africa is no
exception [1, 2, 3]. The climatic conditions in Kenya, specifically those in the tea zone areas,
have continued to change and have attracted considerable research [4]. In developing countries like
Kenya, climate change drastically reduces farmers’ income [5]-[19]. They rely on the major cash
crops like tea, whose total production quantity decreases due to variability in climatic conditions
[20].

Globally, many papers have investigated the effect of climate variability on agriculture, and the
findings indicate mixed outcomes [21]. While most research suggests that climatic variability negates
the influence of crop production, others conclude oppositely [22]. The major controversy has been
that global warming improves the climatic conditions in many regions, which favors crop yields [23].

Food security’s global concern has prompted scholars to identify long and short-term drivers such
as climatic variables [24]. Scholars have used modeling to unravel the dynamism associated with
agriculture and climatic variations [25]. Thus, modeling has quantified the extent of uncertainty
incoherent with existing knowledge [26]-[36].

Several studies on crops yield variability due to variation in climatic conditions proposed using
various modeling tools [37, 38]. Majority of the methods are categorized into statistical and
soft computing techniques [39, 25, 40, 41]. The statistical techniques are exponential smoothing,
autoregressive integrated moving average (ARIMA), and generalized autoregressive conditional
heteroskedasticity (GARCH), which focuses on volatility [42, 43]. The ARIMA (Box-Jenkins) model
is commonly used in analysis and forecasting and extensively used in time series. Thus it has found
numerous usage as an efficient forecasting technique in social science [43]. ARIMA models do not
assume any underlying model or relationships, thus being extensive in forecasting the time series
where the data cases are uncertain [44]-[51]. ARIMA models’ strength relies on its use of the past
and previous values of series and error terms for forecasting, respectively [52]. [43] noted that
ARIMA models are also more robust and efficient when compared to complex structural models to
short-run forecasting techniques.

Kenyan tea is one of the globally recognized brands in the global markets. Tea is Kenya’s most
valuable exports and contributes to 4% of the Gross Domestic Product (GDP) and 26% of its export
earnings. Besides, Kenya is the largest exporter of tea in the world [53]. Tea production in Kenya
has increased by 18% between 2015 and 2016. The value of tea production has declined by 1.6%
between 2016 and 2015. Rigden [54], Muoki [53] noted that the decline is due to variation in climatic
conditions. Nonetheless, [53] posited that the unstable trends in tea production in Kenya recently

57



Muganda et al.; AJPAS, 13(2): 56-75, 2021; Article no.AJPAS.69257

have been due to climatic-driven stresses. Thus, in this study, we propose to use statistical modeling
tools, specifically linear regression, and ARIMA to understand the relationship between climatic
variability and tea production. Thus, the study’s main objective is to model the effect of climatic
variables on tea production in Kenya using a linear regression model with serially correlated errors.

The study has two main contributions.

1. Formulate a linear regression model to capture the relationship between tea production and
climatic variables in terms of serially correlated errors.

2. Model fitting and estimation using Linear regression plus ARIMA.

The rest of the paper is outlined as follows. Section 2 presents the statistical model of the study
with a focus on the linear regression model with ARIMA. Section 3 presents data analysis findings
and results. Section 4 discusses the results of the findings. Section 5 presents a conclusion of the
research.

2 Statistical Models

2.1 Climatic modelling data

Temperature, rainfall, humidity, NDVI, solar radiation, and agriculture production are collected
over time. They, therefore, are referred to as time-series data. Time series data is a sequence of
observations that varies over time [55]. The tea bushes grow for an extended period before uprooting
[56], and therefore, the yield of a new year still depends on what was there the previous year. Due
to variation in yield every year, the present paper proposed using the ARIMA model. The method
help simulate the expected effect of various long-term climatic scenarios on future tea productivity.

The paper uses data from the Kenya Meteorological Department (KMD) and tea yields data
from the Kenya Tea Development Agency (KTDA) covering 9 years, from 2007 to 2015. KTDA
manages a network of tea factories in Kenya. Regression analysis in this paper serves to show
the relationship between environmental factors and tea production. The regression analysis also
indicates scatterplots of yields on various climatic parameters.

2.2 Time series, linear regression, and ARIMA

2.2.1 Time series concepts

A time series is a set of observations, each one recorded at a specific time. Time series concepts have
been widely presented by numerous scholars [57]. There exist two categories of time series: discrete;
and continuous time series. Discrete-time series data is vastly discussed by [58].The data used in
this paper is of continuous-time series form. Continuous-time series is widely discussed by [59].
Stationarity is the foundation of time series analysis [60]. A time series {yt} is strictly stationary
if the joint distribution of yt1 . . . ytk is identical to that of (yt1+t . . . ytk+t) for all t ,where k is an
arbitrary positive integer and t1 . . . tk is a collection of k positive integers. The rest of information
on stationarity is vastly discussed by Matteson [61].

Seasonality on the other hand, is the presence of variations that occur at specific regular intervals
less than a year, such as weekly, monthly, or quarterly [62]. Seasonality components within a time
series data entail seasonality adjustment or deseasonalizing removes these components. The process
yields seasonal stationary and failure non-stationary. A vast discussion on seasonality concepts are
discussed by Mann [63].
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2.2.2 Linear regression modelling

Regression analysis helps us understand how the typical value of the dependent variable (or criterion
variable) changes when any one of the independent variables is varied[64]. In contrast, the other
independent variables are held fixed. Thus, it provides a reasonable basis for estimating the cost
and duration. The case of one explanatory variable is called Simple Linear Regression, which is
for y = β0 + β1x1 + ϵ. y is the tea production in tonnes, x1 is any of the climatic variables, β0 is
the y-intercept or the production when no contribution of climate variables is considered, β1 is the
slope of the regression line and ϵ is the error term.

For more than one explanatory variable, the process is called Multiple Linear Regression, and in
this, if y is dependent variable and x1, x2 . . . xk are independent variables. The multiple regression
model predicts y from the xi of the form (2.1).

y = β0 + β1x1 + β2x2 + . . .+ βkxk + ϵ, (2.1)

where β0+β1x1+β2x2+ · · ·+βkxi the deterministic portion of the model and ϵ is the random error.
β0 is the constant term, β1 to βk are the coefficients relating the k explanatory variables to the
variables of interest. Simple Linear Regression can be thought of as a special case of Multiple Linear
Regression, where k = 1. The term ’Linear’ is used because, in Multiple Linear Regression, we
assume that y is directly related to a linear combination of the explanatory variables, assumes that
the residuals are normally distributed and that the independent variables are not highly correlated.

2.2.3 ARIMA

ARIMA models are, in theory, the most general class of models for forecasting time series [65], which
can be made stationary by differencing (if necessary). A random variable that is a time series is
stationary if its statistical properties are constant over time. A stationary series has no trend [66]. Its
variations around the mean have a constant amplitude; that is, its short-term random time patterns
always look the same in a statistical sense. The ARIMA forecasting equation for a stationary time
series is a linear regression type equation. The predictors consist of lags of dependent variables
or lags of the forecasting errors. ARIMA stand s for Autoregressive Integrated Moving Average.
Lags of the stationarized series in the forecasting equation are called ’autoregressive’ terms, lags
of forecasting errors are ’Moving Average’ terms a time series which needs to be differenced to be
made stationary is said to be ’Integrated.’ A non-seasonal ARIMA model is classified as an ARIMA
(p, d, q). p is the number of autoregressive terms. d is the number of nonseasonal differences needed
for stationarity. q is the number of lagged forecast errors in the prediction equation. Equation (2.2)
shows the general forecasting equation.

ŷt = µ+ ϕ1Yt−1 + · · ·+ ϕpYt−p − θ1et−1 − · · · − θqet−q, (2.2)

where ϕi are the coefficients for AR term and θj for MA.

2.3 Linear regression model with ARIMA

Linear regression with ARIMA combines two powerful statistical models, Linear regression and
ARIMA, to form a single super-powerful regression model. The purpose of the combination is to
forecast time series data. The procedure is summarized in Fig. 1.

2.3.1 SARIMAX

SARIMAX illustrated modeling response regression variables in the matrix X and dependent
variable in vector y. The results suggest that for each time step i, there is yi with a corresponding xi.
SARIMAX modelling is widely discussed and illustrated by the following references [67, 68, 69, 70].
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Fig. 1. The procedure of linear regression model with ARIMA

Source: [5]

2.3.2 ARIMA

The model utilizes the ability of the existence of auto-correlations. The model is a combination of
AR(p) and MA(q). The ARIMA model suits forecasting time series data. One primary assumption
is the lack of no auto-correlation in residual errors. The details of ARIMA model is already discussed
in earlier sections 2.2.3.

2.4 Climatic variables on tea production in Kenya using linear
regression model with ARIMA errors

Equation (2.3)-(2.4) present the general form of linear regression model with ARIMA for the
proposed study.

yt = a+ blxlt + ϵlt, for i = 1, 2, . . . , k (2.3)

where

ϵit =

p∑
i=1

ϕiϵt−i + ωt +

q∑
j=1

θjωt−j . (2.4)

yt is the mean annual tea production. xit are the possible predictors such as the Mean annual
temperature, mean annual rainfall, humidity, solar radiation, Normalized Difference Vegetation
Index (NDVI). a and bi are the linear regression coefficients. The error term is modeled using an
ARMA (p,q) process. The ϕ′

is are the coefficients for the AR term and θ′js for MA.

3 Data Analysis and Findings

3.1 Study area

Kenya is located on the equator and has a mostly semi-arid tropical climate with steppe and semi-
desert in the low lying areas and mountainous forests at the higher altitudes. The climate of Kenya
varies by location, from mostly cool every day to always warm/hot. Tea growing regions in Kenya
have an ideal climate, volcanic red soils, and well-distributed rainfall ranging from 1200mm to 1400
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mm yearly that alternates with long sunny days [71]. Production goes on around the year with two
main peak seasons of the high crop between March and June and October and December, which
coincide with the rainy season. The main tea growing areas in Kenya are within highland regions on
both sides of the Great Valley [72] and astride the equator within altitudes 1500metres 2700metres
above sea level [73]. The regions include areas around Mt. Kenya, the Aberdares and Nyambene
hills in Central Kenya, and the Mau Escarpment, Kericho highlands, Nandi and Kisii Highlands
the Cherangani Hills.

3.2 Data Analysis

The general technique adopted in this paper is the ordinary least square (OLS) to estimate parameters.
This was achieved via R-programming. Kikawa et al. [74] discuses this technique widely. The time-
series data collected on climatic variables (rainfall, NDVI, Maximum and Minimum Temperature,
Maximum and minimum humidity, solar radiation), and their respective trend plots and seasonality
presented in Fig. 2a.

(a) (b)

Fig. 2. (a) Time series plot for Tea production data, from left to right, first row,
(Embu and Kakamega), second row (Kisii and Kericho), third row, (Meru and Nyeri)

between year 2007 and 2016 collected monthly. (b) Time series plot for all the
climatic variables assumed to have impact on tea production from all the selected

counties between year 2007 and 2016 collected monthly. The first to the last column is
Embu, Kakamege, Kericho, Kisii, Meru and Nyeri. The first to the last is NDVI,

average humidity, rainfall, average temperature, and solar radiation in terms of rows.
Kakamega county had no solar radiation data, while Kisii had missing data on the

same variable

Fig. 2a indicates a trend and seasonality. The trend indicates production throughout the year, with
high production in some months and low in others. The plot shows the highest production was in
2012 and the lowest 2009. Fig. 2a indicate some little trend and a bit of seasonality throughout
the production period presented. There are some months with low production. The general trend
shows that many of the months 2007 had the majority of the highest production. The plot shows
the highest production was in 2008 and the lowest 2012. Fig. 2a indicate that neither trend nor
seasonality is exhibited in the time series plot for Kisii county. The trend shows that tea production
is neither low nor high throughout the period, though the production was exceptionally high in 2015.
The plot shows the highest production was in 2015 and the lowest 2015. Unlike in the previous
trends, this trend shows the highest production was followed by the lowest.
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Table 1. Summary statistics for the Linear models. Akaike information criterion
(AIC) estimate the prediction error and hence show relative quality of statistical
models for a given set of data [75]. Bayesian information criterion (BIC) helps in

selection of the true model [76]

Adjusted R2 Residual standard error P-value AIC BIC

Fit1 0.7159 0.2112 < 2.2e−16 -78.154 -44.127

Fit2 0.7173 0.2107 < 2.2e−16 -81.712 -55.247

Table 2. Summary statistics for Linear regression plus residual models

Model AR MA AIC BIC AICc standard error

ARIMA (0,0,1) - 0.536 -0.4865 -0.3932 -0.4854 0.1849

ARIMA (1,0,1) 0.9011 -0.0451 -0.7963 -0.6913 -0.7949 0.1578

ARIMA (1,1,0) -0.0771 - -0.7629 -0.6811 -0.7621 0.1616

ARIMA (1,1,1) 0.5381 -0.8796 -0.8890 -0.7954 -0.8879 0.1513

Fig. 2a shows both trend and seasonality present in the time series plot for Kericho county. Most of
the months have very high production and just a few months with low production. Kericho county
produces the highest volume of tea in Kenya.The plot shows the highest and the lowest trend was in
the same year, 2008. Fig. 2a shows time series for Meru county. The time series plot shows trends
and seasonality. Throughout the entire study period, tea production is with subsequent monthly
very high and low production monthly. The plot shows the highest production was in 2012 and the
lowest 2009. Fig. 2a shows time series plot for Nyeri county. The plot shows trends and seasonality.
Production is throughout the year with subsequent high and low production. The plot shows the
highest production was in 2014 and the lowest 2009.

Fig. 2b shows time series plots of all the climatic variables for all the counties. The plots show
the trends and seasonality between 2007 and 2016.Embu, Kakamega, Kericho, and Kisii counties
experienced high NDVI during the entire study period, while Meru County and Nyeri County
experienced some very low values of NDVI in the year 2010. All six counties experienced both
high and low humidity. Nyeri county experienced the highest humidity among the six counties in
the year 2015 while Kericho county experienced the lowest humidity in 2012. There was rainfall
throughout the entire study period in the six counties, with Kakamega county getting the highest
rain in the year 2014.

3.2.1 Analysis for the three counties that have data on solar radiation

The data collected had some variables such as solar radiation with missing data. We segmented
data analysis based on the counties with all the data and with missing data. The first analysis
dealt with the counties that had data for all variables, including solar radiation. These counties are
Embu, Kericho, and Meru. From this first analysis the following results were obtained.

Table 1 show Fit 1 was a linear model with all the climatic variables. However, NDVI and Maximum
Temperature were found not to be statistically significant. Fit 2 was a linear model with all climatic
variables except NDVI and Maximum Temperature. The results show fit 2 was a better fit since it
had a smaller AIC, BIC, residual standard error, and 71.73% of the total variation in Tea Production
explained by the independent variables compared to 71.59% in fit 1. We found residual from Fit 2
to be autocorrelated.
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Fig. 3a shows a plot of the autocorrelation function (ACF) of the residuals showing the presence of
a pattern. The ACF shows a spike at lag 12 and lags 24, indicating the presence of seasonality. The
Durbin-Watson test showed the p-value was 0 less than 0.05, so Ho was rejected, which means there
was an autocorrelation between the errors. The ACF of the squared residuals had one significant
spike, while the partial autocorrelation function (PACF) had no significant spikes. Therefore, we
fitted MA(1) to the squared residuals.

(a) (b)

Fig. 3. (a) ACF and PACF of residuals and squared residuals from linear regression
model. (b) Plots of residuals of Fit 2 and ARIMA (1,1,1)

(a) Fit 3 (b) Fit 4

Fig. 4. Plots of ACF and PACF of residuals of fit 3 and fit 4 from linear regression
model

We fit the best linear regression model fit 2 while factoring in various residual models. The residual
models considered were ARIMA(0,0,1), ARIMA (1,0,1), ARIMA (1,1,0) and ARIMA (1,1,1).The
results obtained were summarized as shown in the Table 2. Table 2 show ARIMA (1,1,1) has the
smallest AIC, BIC and standard error values and therefore Fit2+ARIMA (1,1,1) model is the best
fit. Equation 3.1 show the linear regression model obtained.

y = 0.0002R+ 0.0002Hmin + 0.004HMax − 0.0001TMin + 0.0202S, (3.1)

where H is humidity, T is temperature, R is rainfall and S is solar radiation. We tested the model
at α = 0.05. The results indicated that Hmin and Tmin were not statistically significant to tea
production. Fig. 3b shows the plot of residuals of the best fit, that is, fit2 + ARIMA (1,1,1). In
this model, the standardized residuals show no obvious patterns.
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Table 3. Summary for statistics analysis for all the climatic variables with exception
of solar radiation

Adjusted R2 Residual Standard error p-value AIC BIC

Fit 3 0.02878 0.1579 0.0003821 -543.4057 -507.6269

Fit 4 0.0008958 0.1753 0.364 -400.2612 -364.6322

Table 4. Summary statistics for Linear regression plus residual models of all counties

Model AR MA AIC BIC AICc standard error

ARIMA (0,0,1) - -0.2710 -0.6812 -0.6181 -0.6808 0.16970

ARIMA (1,0,1) 0.72696 -1.000 -0.7536 -0.6835 -0.7532 0.1628

ARIMA (1,1,0) 0.7269 - -1.000 -0.1272 -0.07102 0.2241

ARIMA (1,1,1) -0.2033 -1.000 -0.6561 -0.5929 -0.6557 0.1709

However, there may be outliers exceeding up to 4 standard deviation in magnitude. ACF and
Ljung Box test show autocorrelation. The normal Q−Q plot shows the normal distribution of the
standardized residuals, a few outliers. Fig. 3b shows the presence of spike in ACF at lag 12 and
lag 24. The observation suggests the presence of seasonality in the residuals.

3.2.2 Analysis for all counties with all climatic variables except solar
radiation

We considered analysis for all the climatic variables with exception of solar radiation. We fit several
linear regression models. Table 3 presents the results obtained after fitting.

Table 3 shows the model Fit 3 and 4, where we considered a differenced tea production for linear
model of all climatic variables except solar radiation. Fit 4 is a linear model with the climatic
variables rainfall, minimum humidity, maximum and minimum temperature with dependent variable
differenced and seasonality removed. Table 3 indicates that fit 3 is the best fit since it has the
smallest AIC and BIC. Residuals from fit 3 had no autocorrelated. The observation is due to a lack
of pattern in a plot of the ACF of the residuals. We carried out the Durbin-Watson test to fit 3,
and the p-value obtained was 0.43, which is greater than 0.05, so H0: we fail to rejected the null
hypothesis, implying that there was no autocorrelation between the residuals.

Fig. 4 shows the residual models fitted were ARIMA (0,0,1), ARIMA (1,0,1), ARIMA (1,1,0) and
ARIMA (1,1,1). In both Fig. 4a and Fig. 4b, that is, both ACF and PACF of the residuals did not
show some pattern indicating that the model was not good. Fig. 4a shows fit 3, which was fitted
while factoring in various residual models. The results of further analysis is presented in Table 4.

Table 4 shows that AIC and BIC values are similar correspondingly in all the cases. The model
data used in the study are real-world data, thus, the size of BIC may be smaller than AIC. That
being the case here, the model based on the values in Table 4 suggests that ARIMA(1, 1, 0) is the
best fit model. We arrived at this decision when comparing AIC and BIC values; the difference
surmounts to large values.
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3.2.3 Fitting linear model for each county

Embu Tea production data for Embu county was differenced and then deseasoned to remove
trend and seasonality. Fig. 5a shows a plot of the Tea production before and after removing trend
and seasonality. We differenced tea production data as dependent variable, while NDVI, Rainfall,
Minimum, and maximum Humidity, minimum and Maximum Temperature, and Solar radiation are
independent variables, a linear model was formulated as in Equation 3.2.

y =1.6569− 3.0944N + 0.0055Hmin + 0.0059HMax

+ 0.0002R− 0.0202TMin + 0.0126TMax − 0.0022S.
(3.2)

where N is NDVI, and T is temperature. Equation 3.2 shows that none of the variables had
statistical significance at p = 0.05 level. The adjusted R-squared was 0.2971, meaning that
29.71% of the total variation in tea production was explained by independent variables. The
p − value = 3.867e−07 which is less than 0.05, thus the fit is statistically significant. We fitted
a second linear model with deseasoned tea production data as the dependent variable and NDVI,
Rainfall, Minimum, and maximum Humidity, minimum and Maximum Temperature, and Solar
radiation as independent variables. Equation 3.3 shows the second linear regression model obtained

y =− 0.8432 + 0.9320N + 0.008275HMin − 0.006597HMax

− 0.000249R− 0.02541TMin + 0.01089TMax − 0.000496S.
(3.3)

Equation 3.3 shows none of the variables had statistical significance at p − value = 0.05 level.
The adjusted R-squared was -0.01611, meaning that 1.61% explained the total variation in tea
production by the independent variables. The p-value=0.5999, which is more than 0.05; therefore,
the fit is not statistically significant. Fig. 5b shows the ACF and PACF of the residuals from the
two model fits

Kericho We differenced and deseasoned tea production data for Kericho county. We aimed to
remove trend and seasonality. Fig. 5c shows a plot of the tea production before and after removing
trend and seasonality.

We differenced tea production data as dependent variable, while NDVI, Rainfall, Minimum and
maximum Humidity, minimum and Maximum Temperature and Solar radiation are independent
variables, a linear model was formulated as in Equation 3.4.

y =− 1.498 + 2.156e−5N + 3.749e−3HMin + 2.425e−3HMax

+ 2.074e−4R+ 3.639e−2TMin + 2.327e−2TMax + 3.789e−3S.
(3.4)

Equation 3.4 shows that none of the variables had statistical significance at 0.05 level. The adjusted
R-squared was 0.1935, meaning that 19.35% explained the total variation in tea production by
the independent variables. The p-value=0.0001614, which is less than 0.05; therefore, the fit is
statistically significant. We fit a second linear model with deseasoned tea production data as
the dependent variable and NDVI, Rainfall, Minimum and maximum Humidity, minimum and
Maximum Temperature, and Solar radiation as independent variables. Equation 3.5 shows the
second linear regression model obtained.

y = −1.651e−1 − 1.543e−5N + 2.279e−3HMin + 2.913e−3HMax

− 3.134e−4 − 6.055e−2TMin + 2.823e−2TMax − 5.178e−3S.
(3.5)

Equation 3.5 suggests that none of the variables had statistical significance at 0.05 level. The
adjusted R-squared was −0.004719, meaning that 0.47% explained the independent variables’ total
variation in tea production. The p-value=0.4825, which is more than 0.05; therefore, the fit is not
statistically significant. Fig. 5d shows the ACF and PACF of the residuals from the two model fits.
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(a) (b)

(c) (d)

Fig. 5. (a) Plot of differenced and deseasoned Tea Production for Embu county. (b)
ACF and PACF of Residuals for Embu county. (c) Plot of differenced and deseasoned
Tea Production for Kericho county. (d) ACF and PACF of Residuals for Kericho

Kisii We differenced and then deseasoned tea production data for Kisii county aimed to remove
trend and seasonality. Fig. 6a shows a plot of the Tea production before and after removing trend
and seasonality. We differenced tea production data as dependent variable, while NDVI, Rainfall,
Minimum, and maximum Humidity, minimum and Maximum Temperature are independent variables,
a linear model was formulated as in Equation 3.6.

y = −1.3048− 2.1162N + 0.0028HMin + 0.0017HMax

+ 0.0002R+ 0.0128TMin − 0.0067TMax.
(3.6)

We found NDVI to be statistically significant at 0.05 level. The adjusted R-squared was 0.1736,
meaning that the independent variables explained 17.36% of the total variation in tea production.
The p-value=0.0003, which is less than 0.05; therefore, the fit is significant. We fitted a second
linear model with deseasoned tea production data as the dependent variable and NDVI, Rainfall,
Minimum, and maximum Humidity, minimum and Maximum Temperature as independent variables.
Equation 3.7 shows the second linear regression model derived model obtained

y = −1.47 + 9.537e−1N + 3.147e−4HMin + 1.898e−3HMax

− 4.864e−5R− 6.418e−2TMin + 6.247e−2TMax.
(3.7)

We obtained maximum temperature to be statistically significant at 0.05 level. The adjusted R-
squared was 0.01545, meaning that 1.55% explained the independent variables’ total variation in
tea production. The p− value = 0.291 which is more than 0.05; therefore the fit is not significant.
Fig. 6b shows the ACF and PACF of the residuals.
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Kakamega We differenced and then deseasoned tea production data for Kakamega county
aimed to remove trend and seasonality. Fig. 6c shows a plot of the Tea production before and after
removing trend and seasonality.

(a) (b)

(c) (d)

Fig. 6. (a) Plot of differenced and deseasoned Tea Production for Kisii. (b) ACF and
PACF of Residuals for Kisii. (c) Plot of differenced and deseasoned Tea Production

for Kakamega. (d) ACF and PACF of Residuals for Kakamega

We differenced tea production data as dependent variable, while NDVI, Rainfall, Minimum, and
maximum Humidity, minimum and Maximum Temperature are independent variables, a linear
model was formulated as in Equation 3.8. We found NDVI, Minimum Humidity, and Minimum
temperature to be statistically significant at 0.05 level. The adjusted R-squared was 0.3206,
meaning that 32.06% explained the independent variables’ total variation in tea production. The
p-value=4.023e−8, which is less than 0.05; therefore, the fit is significant. We fitted a second
linear model with deseasoned tea production data as the dependent variable and NDVI, Rainfall,
Minimum, and maximum Humidity, minimum and Maximum Temperature as independent variables.
Equation 3.9 shows the second linear regression model obtained.

y = 7.32e−1 − 2.34N + 2.36e−3HMin + 2.77e−3HMax + 5.57e−5R

+ 5.41e−2TMin − 1.23e−3TMax.
(3.8)

y = −8.924e−1 + 6.898e−1N − 1.9987e−4HMin + 8.448e−4HMax

+ 4.104e−5R− 2.32e−2TMin + 2.364e−2TMax.
(3.9)

Equation 3.9 shows the variables had statistical significance at 0.05 level. The adjusted R-squared
was −0.03917, meaning that 3.9% explained the independent variables’ total variation in tea
production. The p − value = 0.871, which is more than 0.05; therefore, the fit has no statistical
significance. Fig. 6d shows the ACF and PACF of the residuals from the two model fits.
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Nyeri We differenced and deseasoned tea production data for Nyeri county to remove trend
and seasonality. Fig. 7a shows a plot of the Tea production before and after removing trend
and seasonality. We differenced tea production data as dependent variable, while NDVI, Rainfall,
Minimum, and maximum Humidity, minimum and Maximum Temperature are independent variables,
a linear model was formulated as in Equation 3.10.

y = 0.793− 1.628N + 0.0004HMin + 0.005HMax

+ 0.001R− 0.016TMin − 0.001TMax.
(3.10)

Equation 3.10 shows that NDVI, Maximum Humidity, and rainfall are statistically significant
at0.05 level. The adjusted R-squared was 0.2697, meaning that 26.97% explained the independent
variables’ total variation in tea production. The p − value = 1.137e−6 which is less than 0.05
therefore the fit is good. We fitted a second linear model with deseasoned tea production data
as the dependent variable and NDVI, Rainfall, Minimum, and maximum Humidity, minimum and
Maximum Temperature as independent variables. Equation 3.11 shows the second linear regression
model obtained.

y = −0.586 + 0.619N + 0.007HMin − 0.009HMax

− 0.0005R+ 0.016TMin − 0.003TMax.
(3.11)

Equation 3.11 suggests that NDVI is statistically significant at 0.05 level. The adjusted R-squared
was 0.03618, meaning that 3.618% explained the independent variables’ total variation in tea
production. The p-value=0.16, which is more than 0.05; therefore, the fit is not good. Fig. 7b
shows the ACF and PACF of the residuals from the two model fits.

Meru We differenced and deseasoned tea production data for Meru county to remove trend
and seasonality. Fig. 7c shows a plot of the tea production before and after removing trend
and seasonality. We differenced tea production data as dependent variable, while NDVI, Rainfall,
Minimum and maximum Humidity, minimum and Maximum Temperature, and Solar radiation are
independent variables, a linear model was formulated as in Equation 3.12.

y = 0.569− 1.114N − 0.0004HMin − 0.003HMax

+ 0.0003R− 0.008TMin + 0.033.001TMax − 0.011S
(3.12)

Equation 3.12 suggests that NDVI and rainfall are statistically significant at 0.05 level. The adjusted
R-squared was 0.2044, meaning that 20.44% explained the independent variables’ total variation
in tea production. The p − value = 9.04e−5 which is less than 0.05 therefore the fit is good. We
fitted a second linear model with deseasoned tea production data as the dependent variable and
NDVI, Rainfall, Minimum and maximum Humidity, minimum and Maximum Temperature, and
Solar radiation as independent variables. Equation 3.13 shows the first linear regression model
obtained.

y = −0.803 + 0.428N + 0.008HMin − 0.004HMax + 0.0001R

− 0.009TMin + 0.005TMax + 0.003S.
(3.13)

Equation 3.13 suggests that the variables had no statistical significance at 0.05 level. The adjusted
R-squared was −0.01387, meaning that 1.38% explained the independent variables’ total variation
in tea production. The p − value = 0.5763 which is more than 0.05 therefore, the fit is not good.
Fig. 7d shows the ACF and PACF of the residuals from the two model fits are as shown below.
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(a) (b)

(c) (d)

Fig. 7. (a) Plot of differenced and deseasoned Tea Production for Nyeri county. (b)
ACF and PACF of Residuals for Nyeri (c) Plot of differenced and deseasoned Tea

Production for Meru county. (d) ACF and PACF of Residuals for Meru

4 Discussion

The climatic variations in the tea zones affect tea production. The change in tea production
affects farmers’ income. These changes can be positive or negative. The need for long and short-
term drivers of crop production has prompted the use of modeling to understand and forecast the
dynamism of climate variability on food production. The variation of tea production specifically also
affects Kenya’s GDP, which depends on tea exports. The proposed study has statistical modeling
tools, specifically linear regression, and ARIMA to understand the relationship between climatic
variability and tea production.

The scatter plot matrix for all the climatic variables (mean annual temperature, mean annual
rainfall, humidity, solar radiation, and NDVI) for all the counties (Embu, Kakamega, Kisii, Kericho,
Meru, and Nyeri) under the study indicated that tea production has a linear relationship with most
climatic variables. The relationship is strong with solar radiation. The model fit analysis was
done separately for Kakamega, Kisii, and Nyeri counties with missing solar radiation data and
others with all data. The results noted that NDVI and Maximum Temperature had no statistical
significance with tea production. Fit 2 was a linear model with all climatic variables except NDVI
and Maximum Temperature.

A model fit for each county based on differencing and deseasoning indicated that no variables
had statistical significance at p = 0.05 level for the first fit for Embu. The results also indicated
the data had 29.71% total variation explained by the independent variables. The p − value =
3.867e−07 suggesting statistical significance. The second linear regression fit indicated no statistical
significance between independent and dependent variables with 1.61% explained variability. The
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first linear model fit for Kericho using NDVI, rainfall, minimum and maximum humidity, minimum
and maximum temperature, and solar radiation as independent variables and tea production as the
dependent variable. The results show that none of the variables had statistical significance at 0.05
level with 19.35% explained variability. A second linear model with deseasoned tea production
data as the dependent variable and NDVI, rainfall, minimum, maximum humidity, minimum
and maximum temperature, and Solar radiation as independent variables suggests none of the
variables had statistical significance at 0.05 level. The adjusted R-squared suggests 0.47% explained
variability and shows no statistical significance.

A model fit for a linear model with differenced tea production data as the dependent variable
and NDVI, rainfall, minimum and maximum humidity, minimum and maximum temperature as
independent variables for Kisii found NDVI is statistically significant at 0.05 level. The adjusted
R-squared suggests 17.36% explained variability of the total variation in tea production. The p-
value=0.0003 < 0.05, suggests the model fit is statistically significant. A second linear model
with deseasoned tea production data as the dependent variable and NDVI, rainfall, minimum
and maximum humidity, minimum and maximum temperature as independent variables for Kisii
suggests that maximum temperature is statistically significant 0.05 level. The adjusted R-squared
suggests 1.55% explained variability of the total variation in tea production. The p − value =
0.291 > 0.05 suggests the fit is not significant.

A model fit for a linear model with differenced tea production data as the dependent variable
and NDVI, rainfall, Minimum, and maximum humidity, minimum and maximum temperature as
independent variables for Kakemega found that NDVI, minimum humidity, and minimum temperature
are statistically significant at the 0.05 level. The adjusted R-squared suggests 32.06% explained
variability of the total variation in tea production. The p-value=4.023e−8 < 0.05 suggests the
model fit is statistically significant. A second linear model with deseasoned tea production data
as the dependent variable and NDVI, rainfall, minimum and maximum humidity, minimum and
maximum temperature as independent variables for Kakamega suggest that all the variables are
statistically significant at 0.05 level. The adjusted R-squared suggests 3.9% explained variability of
the total variation in tea production. The p−value = 0.871 > 0.05 suggests the fit is not significant.

A model fit for a linear model with differenced tea production data as the dependent variable
and NDVI, rainfall, minimum, and maximum humidity, minimum, and maximum temperature as
independent variables for Nyeri found NDVI, maximum humidity, and rainfall are statistically
significant at 0.05 level. The adjusted R-squared suggests 26.97% explained variability of the
total variation in tea production. The p-value p − value = 1.137e−6 < 0.05, suggest the model
fit is statistically significant. A second linear model with deseasoned tea production data as the
dependent variable and NDVI, rainfall, minimum and maximum humidity, minimum and maximum
temperature as independent variables for Nyeri suggest that NDVI is statistically significant at 0.05
level. The adjusted R-squared suggests 3.618% explained variability of the total variation in tea
production. The p− value = 0.16 > 0.05 suggests the fit is not significant.

A model fit for a linear model with differenced tea production data as the dependent variable and
NDVI, rainfall, minimum and maximum humidity, minimum and maximum temperature, and Solar
radiation as independent variables for Meru found NDVI and rainfall are statistically significant at
0.05 level. The adjusted R-squared suggests 20.44% explained variability of the total variation in
tea production. The p − value = 9.04e−5 < 0.05, suggest the model fit is statistically significant.
A second linear model with tea production data as the dependent variable and NDVI, rainfall,
Minimum, and maximum Humidity, minimum and Maximum Temperature, and Solar radiation as
independent variables for Meru suggest that no variable is statistically significant at 0.05 level. The
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adjusted R-squared suggests 1.38% explained variability of the total variation in tea production.
The p− value = 0.5763 > 0.05 suggests the fit is not significant.

5 Conclusion

The study shows that climatic variability affects tea production. The dynamism of climatic variability
with tea production varies based on the region under investigation. The forecast models generate
statistical significance suggesting their possible use in real-world data besides academics. Future
studies may consider combining the current study with other analyses. The analyses that may
be combined with the current study are statistical modeling procedures such as the generalized
autoregressive conditional heteroskedasticity (GARCH) models.
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