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Abstract: As the key mechanism of attitude control of micro/nano-satellites, the flywheel design
is mostly based on empirical formulae that do not meet the requirements of lightweight and high-
performance micro/nano-satellite platforms. In this paper, the structural shape of micro/nano-
satellite flywheels is analysed, and a set of flywheel optimisation methods is proposed to realise
the parametric optimisation analysis of the structural shape. First, the general principle of flywheel
efficiency is introduced, the optimisation evaluation factor of flywheel design is proposed, and the
parametric model of a flywheel structure is established by using the finite element secondary develop-
ment technology, which can be used to quickly build a finite element model of different dimensions.
Second, the optimisation model of flywheels is established while introducing the approximate model
algorithm, greatly improving the optimisation efficiency. Considering the phenomenon that the
genetic algorithm falls below local optimisation under a large parameter range, the method of initial
optimisation is proposed to reduce the upper and lower limits of the optimisation parameters. Finally,
the optimal shape of the flywheel is obtained by using the parametric optimisation model of the
flywheel. The finite element analysis results show that the flywheel optimisation evaluation factor
proposed in this work can effectively improve the comprehensive performance of the flywheel as
the optimisation target, and the corresponding optimisation method can be well applied to the engi-
neering application and design of micro/nano-satellite platforms. This can help guide the structural
optimisation design of micro/nano-satellite platforms in the future.

Keywords: satellites; optimisation; parametric; finite element; flywheel

1. Introduction

Micro/nano-satellites generally refer to satellites with a magnitude of 1–100 kg. Com-
pared with conventional large satellites, micro/nano-satellites have a short development
cycle, low cost, high flexibility, and low risk, and can better serve in many fields, such as
meteorology, telemetry, and communication [1]. The large-scale production and application
of low-orbit satellites has become a major trend in modern satellite development because
of their low cost and weight. Therefore, in the pursuit of miniaturisation of micro/nano-
satellite supporting products, there are also corresponding requirements for flywheels. In
a three-axis stable satellite attitude control system, the flywheel is the main actuator, its
rotation speed is regulated by a high-speed motor, and the star attitude control is realised
through momentum exchange with the stars [2]. As a key mechanism for the attitude
control of micro/nano-satellites, the product quality of the flywheel is directly related to
the ground orientation and attitude control of the satellite, and directly affects the satellite’s
life and in-orbit mission [3]. Therefore, a micro/nano-satellite flywheel should be built on
the basis of accurate optimisation to more effectively ensure the smooth operation of the
satellite platform, release the payload allowance, and maximise the performance potential
of the satellite platform.
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In terms of satellite structure optimisation, Han Chong [4] completed maximum first
natural frequency and the smallest-quality multi-objective by combining a BP (backprop-
agation) neural network and genetic algorithm optimisation calculation, aiming at the
requirements of small total mass and high first natural frequency of the satellite structure,
and obtained reasonable design variable values. The feasibility of a BP network combined
with a genetic algorithm in satellite structure optimisation was verified. Chen Shen-Yan [5]
established a finite element model of the initial scheme of a new satellite structure in the
initial prototype stage. Taking the cross-section size of each beam in the main load truss as
the design variable, and considering the whole-star modal frequency, strength, and stability
constraints, a structural optimisation model was established to minimise the structural
weight. Gu Yuanxian [6] considered the constraints of the natural frequency and flexion
stability in the optimisation design, used a variety of design variables, adopted discrete
material variable continuous processing for honeycomb sandwich materials, and used
the JIFEX software to optimise the design of a main load-bearing structure for large com-
munication satellites. From the above research, we can see that there are two main ways
to optimise the satellite structure: One is to choose lightweight structural materials and
improve their optimisation. The other is the optimised design of the structural parameters.
For the latter, the main goal of optimisation is to achieve the minimum weight under the
premise of ensuring the first-order frequency of the structure—usually in the form of an
intelligent optimisation algorithm and finite element parametric simulation.

Compared with satellite structural optimisation, the constraints of satellite flywheel
optimisation are largely consistent with the optimisation goal, guaranteeing the maximum
first-order vibration frequency and the minimum weight. However, in the finite element
simulation, the load conditions—such as rotational speed and angular acceleration—should
be considered. In terms of the optimisation design, there are few studies related to the
flywheel. Researchers such as Ma Huaiteng [7] optimised the design of the inertia disc of
marine high-power diesel generator sets, and checked the strength of the inertia disc using
Ansys Workbench. As a result, the safety factor was greatly improved compared with the
initial inertia disc. However, the optimisation method was based on an empirical formula,
and the results were not optimised. Xu Shihui [8] conducted a finite element simulation
analysis of centrifugal impellers using Abaqus, obtained the force characteristics of the
impeller under the combination of acceleration and constant velocity, and analysed and
summarised the method of impeller material selection and weight reduction.

Eigenvalues and structural vibration modes describe the vibration characteristics
and frequency characteristics of the structure under free vibration. When solving the
eigenvalue, one method is solving all of the eigenvalue problems of the structural system’s
characteristic equation; the other is solving the partial eigenvalue problem. In structural
mechanics, the matrix order is very high, and it is not necessary to solve the full eigenvalues
and eigenvectors. In the solution method, there are two categories: the direct method and
the vector iteration method. Both the Lanczos technique and the subspace iteration in the
FEM analysis software Abaqus are considered to be vector iteration methods [9]. Using the
MSC/NASTRAN finite element software, Shan Tilei designed the overall configuration of
the satellite, which showed that the optimised satellite structure has a high-strength and
high-stiffness structure-carrying capacity and good-quality characteristics [10].

For the objective function, the optimisation methods can be divided into single-
objective optimisation and multi-objective optimisation. For the former, the optimisation
procedure is driven by a single objective function to find the optimal solution to the optimi-
sation parameters. In the second case, the processes driven by multiple objective functions
eventually achieve the trade-off between them.

Optimisation algorithms can be used to find optimal solutions for a particular problem,
or a set of optimal solutions in a specific design space, for which they have been widely
used in many fields. A large number of optimisation algorithms have been developed based
on different numerical methods or logic strategies for specific problems. These methods can
generally be divided into numerical optimisation algorithms and global optimisation algo-
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rithms. Numerical optimisation algorithms, such as the feasible direction algorithm [11]
and the nonlinear conjugate gradient algorithm [12], are generally much faster than global
optimisation algorithms. However, the results of the numerical optimisation algorithms
are highly dependent on the initial values, which may lead to local optimisation if the
initial search point is not appropriate. Global optimisation algorithms can achieve global
optimisation without calculating the local gradient, with no strict requirements for the
initial search point. Typical global optimisation algorithms include the simulated anneal-
ing algorithm [13], the genetic algorithm [14,15], and the particle swarm optimisation
algorithm [16].

The non-dominant classification genetic algorithm (NSGA-II) was proposed by Deb
et al. [17–19]. On the basis of the non-dominant ranking genetic algorithm based on the
Pareto optimisation concept (NSGA [20]), the defect of high NSGA operation complexity
is overcome, and the algorithm’s performance is greatly improved. NSGA-II considers
both crowd computing and elite strategies, using the crowd comparison operator that
reduces the computational complexity of the algorithm and avoids local convergence in
the optimisation process. Based on the notion of the Pareto-optimal solution, the weights
of each objective function do not require an artificial distribution, and result in a non-
inferior set of solutions. Individuals at the Pareto-optimal boundary can be uniformly
extended to the entire solution space, ensuring the population diversity with high efficiency
and robustness.

In some structural design and development stages, the performance of the engineering
structure is optimised by the finite element simulation technology, shortening the cycle
of analysis and design to a certain extent. However, with increasing computer speed, the
accuracy requirements of the FEM simulation analysis are also improved accordingly—
especially for a large number of complex and fine engineering structures—and the compu-
tational cost of completing an engineering FEM simulation analysis with high fidelity is
greatly increased. At the same time, with the proposal and research of multidisciplinary
optimisation design, the optimisation design of engineering structures often needs a lot
of simulation analysis to obtain the system response values of different design variable
combinations, so it can be seen that relying only on finite element simulation technology
is not in line with the engineering reality. Therefore, the development of computer ca-
pabilities does not significantly shorten the optimisation design cycle of actual complex
engineering structures, but increases the complexity of finite element modelling. In order
to scientifically reduce the number of complex and time-consuming simulation calculations
to a certain extent, the agent model technology was developed and improved, and has
been gradually applied to actual complex engineering optimisation in various fields as a
research hotspot [21].

The agent model, also known as the approximate model, is a mathematical model
mainly based on a small number of finite element sample points and the corresponding
response values based on finite element simulation or physical tests. The constructed
model has a low calculation complexity and fast calculation speed, but the calculation
results are close to the actual results. Therefore, the model can be used to replace the
actual optimisation problem, and then reduce the number of time-consuming finite element
calculations in order to meet the requirements of effectively shortening the design cycle and
computer cost in the optimisation design of complex engineering structures. The current
commonly used approximate models include, among others, the polynomial response
surface models, the Kriging model [22,23], the radial basis function (RBF) model [24,25], the
support-vector machine model, and the neural network model. The radial basis model has
a simple form, homogeneity, few setting parameters, and easy processing, and is widely
used for both high-dimensional and nonlinear problems.
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2. Theory
2.1. Flying Wheel Design Theory

Satellite attitude control includes two main control methods: jet control, and angular
momentum exchange control. High-precision, long-life, three-axis stable satellites generally
use a wheel control scheme; that is, using the angular momentum exchange device as the
control system actuator.

The wheel control system is based on the momentum moment theorem—the size and
direction of the flywheel produce the reaction moment acting on the satellite, which then
changes the momentum moment of the main body of the satellite.

The wheel control system is divided into a zero-momentum control system and a
bias control system. The zero-momentum control system is applied to satellites with high
stability requirements. Taking the zero-momentum control system as an example, we have
the following [26]. Block diagram of the satellite zero-momentum system is as shown in
Figure 1.
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Where Tb is the theoretical control torque; Td is the actual control torque; Tc is the
component array of external moments in the stellar coordinate system; ϕ, θ, and ψ are the
three-axis attitude angles;

.
ϕ,

.
θ, and

.
ψ are the three-axis attitude angular velocities; ϕ̂ , θ̂,

and ψ̂ are the three-axis estimated attitude angles ;
.̂
ϕ,

.̂
θ, and

.̂
ψ are the three-axis attitude

estimated angular velocities; and RWs is the flywheels combination.
Satellite pose dynamics model of the three-orthogonal flywheel [26]:

Ib
.

wb + w×b Ibwb + w×b JwΩw = Td − Jw
.

Ωw (1)

where Ib is the component array of inertia and vector in the stellar coordinate system, wb is
the component matrix of the angular velocity vector in the stellar coordinate system, Jw is
the diagonal array of rotational inertia of three flywheels, Ωw is the array of the rotational
speed of three flywheels, and Td is the component array of external moments in the stellar
coordinate system.

Simplified to the near-circular orbit, the satellite coordinate system coincides with the
main inertia axis. The component array and attitude angular velocity relationship of the
satellite’s angular velocity vector in the satellite coordinate system is wb:

wb =


.
ϕ
.
θ
.
ψ

−
 ψ

1
−ϕ

wo (2)

where ϕ, θ, and ψ are the three-axis attitude angles;
.
ϕ,

.
θ, and

.
θ are the three-axis attitude

angular velocities; and wo is the angular velocity of the Earth’s rotation.
For high-orbit or inertial directional satellites, we can bring in the kinetic model and

omit the minor terms:
Ix

..
ϕ = Tdx − Jx

.
Ωx

Iy
..
θ = Tdy − Jy

.
Ωy

Iz
..
ψ = Tdz − Jz

.
Ωz

(3)
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In summary, for high-orbiting or inertially oriented satellites, the three channels of the
attitude dynamics control model are decoupled, and each channel’s mathematical model
can be considered as a double-integral link.

The real flywheel mathematical model based on rotational speed control is nonlinear.
After linearisation, the simplified model is as follows [26,27]:

h(s)s
Tc(s)

= K
s+ 1

Tw + KKm
R
·Km

R

Tw = RJ
KmKe

(4)

where h(s)s is the actual control torque, Tc(s) is the desired control torque, Km is the torque
constant, R is the armature resistance, Ke is the potential constant, J is the rotor and
flywheel rotational inertia of the motor, and K is a constant scale factor. Model diagram of
the flywheel motor shows in Figure 2.

Aerospace 2022, 9, x FOR PEER REVIEW 5 of 16 
 

 

𝐼௫𝜑ሷ ൌ 𝑇ௗ௫ െ 𝐽௫Ωሶ ௫𝐼௬𝜃ሷ ൌ 𝑇ௗ௬ െ 𝐽௬Ωሶ ௬𝐼௭𝜓ሷ ൌ 𝑇ௗ௭ െ 𝐽௭Ωሶ ௭  (3)

In summary, for high-orbiting or inertially oriented satellites, the three channels of 
the attitude dynamics control model are decoupled, and each channel’s mathematical 
model can be considered as a double-integral link. 

The real flywheel mathematical model based on rotational speed control is nonline-
ar. After linearisation, the simplified model is as follows [26,27]: ℎሺ𝑠ሻ𝑠𝑇௖ሺ𝑠ሻ ൌ 𝐾𝑠 ൅ 1𝑇௪ ൅ 𝐾𝐾௠𝑅 ∙ 𝐾௠𝑅

𝑇௪ ൌ 𝑅𝐽𝐾௠𝐾௘
 (4)

where ℎ(𝑠)𝑠 is the actual control torque, 𝑇𝑐(𝑠) is the desired control torque, 𝐾𝑚 is the 
torque constant, 𝑅 is the armature resistance, 𝐾𝑒 is the potential constant, 𝐽 is the rotor 
and flywheel rotational inertia of the motor, and 𝐾 is a constant scale factor. Model dia-
gram of the flywheel motor shows in Figure 2. 

 
Figure 2. Model diagram of the flywheel motor. 

The relationship between command torque and rotor speed satisfies the following 
equation: 𝐽 𝑑Ω𝑑𝑡 ൌ 𝑇௪ (5)

where Ω is the inertia disc speed, t is the time, and 𝑇w is the torque. 
In conclusion, the size of inertia of the satellite largely determines the efficiency of 

the flywheel. In addition, the requirements of light weight and miniaturisation should 
be met. Based on this, the following flywheel evaluation factor is proposed: 𝑅𝑒 ൌ 𝑐𝐽𝐹𝑟𝑒1𝑀  (6)

where c is a constant term, M is the mass of the inertia disc, and Fre1 is the first-order vi-
bration frequency of the flywheel. In the flywheel optimisation process, the larger the 
value of Re, the more suitable the obtained flywheel is for the nano-satellite platform. 

2.2. The RBF Radial Basis Response Model 
The RBF model uses the Hardy method introduced in the literature by Kansa 

[25,27], assuming the set of points x1, …, xN ∈ Ω ⊂ ℜN, such that the set of any radial basis 
functions gi(x) = g(‖x − xj‖) ∈ ℜ, j = 1,2,…,N, where ‖x − xj‖ is the Euclidean distance, 
which is calculated as ൫𝑥 െ 𝑥௝൯்(𝑥 − 𝑥𝑗). Given the data points x1, …, xN ∈ Ω ⊂ ℜN, the cor-
responding interpolation is y1, …, yN ∈ Ω ⊂ ℜN. 

By solving the N + 1 linear system of equations in N + 1, the unknown expansion 
coefficients 𝛼j are as follows: 

Figure 2. Model diagram of the flywheel motor.

The relationship between command torque and rotor speed satisfies the following equation:

J
dΩ
dt

= Tw (5)

where Ω is the inertia disc speed, t is the time, and Tw is the torque.
In conclusion, the size of inertia of the satellite largely determines the efficiency of the

flywheel. In addition, the requirements of light weight and miniaturisation should be met.
Based on this, the following flywheel evaluation factor is proposed:

Re =
cJFre1

M
(6)

where c is a constant term, M is the mass of the inertia disc, and Fre1 is the first-order
vibration frequency of the flywheel. In the flywheel optimisation process, the larger the
value of Re, the more suitable the obtained flywheel is for the nano-satellite platform.

2.2. The RBF Radial Basis Response Model

The RBF model uses the Hardy method introduced in the literature by Kansa [25,27],
assuming the set of points x1, . . . , xN ∈ Ω ⊂ <N, such that the set of any radial basis
functions gi(x) = g(‖x − xj‖) ∈ <, j = 1, 2, . . . , N, where ‖x − xj‖ is the Euclidean distance,

which is calculated as
(
x− xj

)T(x − xj). Given the data points x1, . . . , xN ∈ Ω ⊂ <N, the
corresponding interpolation is y1, . . . , yN ∈ Ω ⊂ <N.

By solving the N + 1 linear system of equations in N + 1, the unknown expansion
coefficients αj are as follows:

N

∑
j=1

αjgj(xi)+αN+1= yi, i = 1, . . . , N (7)
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N

∑
j=1

αj= 0 (8)

Obtain the RBF interpolation:

F(x) =
N

∑
j=1

αjgj(x)+αN+1 (9)

Introduce:

p =

1
...
1

 ∈ <N (10)

G =

 g1(x1) . . . gN(x1)
...

. . .
...

gN(x1) . . . gN(xN)

 ∈ <(N+1)(N+1) (11)

H =

[
G p
pT 0

]
∈ <(N+1)(N+1) (12)

where α =(α1, . . . , αN+1)
T and y = (y1, . . . , yN , 0)T ∈ <N×N ; the following matrix rela-

tionship can be obtained:
Hα = y (13)

The interpolation coefficient can be obtained after finding the inverse:

α = H−1y (14)

This gives the derivative at the interpolation point xi, i = 1, 2, . . . , N.
The basis function used in this work is a function with a variable power spline that

can adjust and approximate a large number of other functions:

g(x) =‖ x− xj ‖ c (15)

The parameter c in Equation (15) is the shape function variable, with a value of 0.2~3.
For the fitted model, R-squared was generally used to assess the degree of data fitting:

R− Square = 1 − ∑N
i=1 (Y i − F(x i))

2

∑N
i=1 (Y i − Y

)2 (16)

where N is the number of samples, Yi(i = 1 . . . N) represents the original data, Y is the
mean of the original data, and F(xi)(i = 1 . . . N) is the interpolated value.

2.3. Model Optimisation

The flywheel profile parameters are shown in Figure 3, with a total of nine optimised
parameters: Xa, Xb, Xc, Jr1, Jr2, Gb1, Gb2, and Gbt.
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Where Xa, Xb, Xc, Jr1, Jr2, Gb1, Gb2, and Gbt are the size parameters of the flywheel. For
the flywheel optimisation target, in addition to the flywheel evaluation factor Re mentioned
above, the first-order vibration frequency characterising the inertia disc stiffness is also one
of the targets. In order to improve the optimisation quality of the optimisation model, it is
necessary to narrow the optimisation parameter interval and prevent the algorithm from
falling into the local optimum to affect the final result. This work divides the optimisation
model into the initial optimisation model and the final optimisation model. The initial
optimisation model for the flywheel is as follows:

Obj :


max Fre1

max J
max Re
min M

(17)

s.t.

{
M ∈ (0, Mmax)

Max_mises ∈
(

0, δs
4

) (18)

vars0 :


Xi ∈

[
Xi_0dn , Xi_0up

]
, i = a, b, c.

Jri ∈
[

Jri_0dn , Jri_0up

]
, i = 1, 2.

Gbi ∈
[

Gbi_0dn, Gbi_0up

]
, i = 1, 2, t.

r ∈
[
r_0dn, r_0up

]
(19)

where M is the flywheel mass, Fre1 is the flywheel’s first-order frequency, and Mmax is the
set upper mass limit. Max_mises is the maximum Mises stress, and δs is the material yield
strength. The ‘0’ in the subscript _0dn represents the initial set value, and _dn represents the
lower limit of the interval. The ‘0’ in the subscript _0up represents the initial set value, and
_up represents the upper limit of the interval. The difference between the final optimisation
model and the initial optimisation model is the interval of the optimisation variables,
as follows:

vars :


Xi ∈

[
Xi_dn , Xi_up

]
, i = a, b, c.

Jri ∈
[

Jri_dn , Jri_up

]
, i = 1, 2.

Gbi ∈
[

Gbi_dn, Gbi_up

]
, i = 1, 2, t.

r ∈
[
r_dn, r_up

]
(20)

where the lower corner standard _dn represents the lower limit of the optimisation pa-
rameter interval, and the lower corner standard _up represents the upper limit of the
optimisation parameter interval.

The specific optimisation steps of this paper are shown in Figure 4, where Initial
Optimisation Results 1–4 refer to four sets of optimisation parameter results obtained by
four calculations using the initial optimisation model. The optimisation times can also be
changed according to the corresponding situation.
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The range of optimisation parameters of the optimisation model is generally deter-
mined according to practical engineering design experience. In certain situations, such
as designing a particular product, the range of optimisation values may vary with the
design goal, but this is also based on engineering experience. In order to avoid such a large
optimisation parameter range resulting in low optimisation efficiency or the model falling
into the local optimum, the method of narrowing the optimisation parameter interval was
adopted to improve the optimisation quality. Specifically, the approximate model was
optimised based on the initial optimisation model, and several initial optimisation results
were obtained. Expansion of the upper and lower limits of the optimised parameters by
1.2-fold in the above initial optimisation results replaced the initial optimisation parameter
interval to form a new optimisation model and then obtain the optimal solution.

3. Parameterised Finite Element Modelling

The material of the flywheel inertia plate in this work was brass—an isotropic material.
Its density, failure strength, elastic modulus, and Poisson ratio are shown in Table 1.

Table 1. Applied flywheel optimisation conditions.

Applied Condition Numeric Value

Density 8500 kg/m3

Modulus of elasticity 106 Gpa
Poisson ratio 0.324

Yield strength δs 300 Mpa

For the typical working environment of flywheels in engineering applications, the
maximum speed and angular acceleration of flywheel are specified in the satellite attitude
and orbit control design. The flywheel optimisation provided in this work was based on a
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case encountered in the project, where the flywheel design requirements stipulated that
the maximum speed be 6000◦ rad/s, and the maximum angular acceleration be 5◦ rad/s2.
During optimisation, the worst working state of the flywheel was selected for optimisation;
that is, the flywheel speed just reached the highest value (6000◦ rad/s), and the angular
acceleration was 5◦ rad/s2 (it would change to 0◦ rad/s2 at the next moment). At this
time, the inertia and rotation of the flywheel produced the largest centrifugal force and the
largest stress, and it was closest to its own failure strength, as shown in Table 2.

Table 2. Optimised applied flywheel conditions.

Applied Condition Numeric Value

Angular acceleration 5◦ rad/s2

Speed 6000◦ rad/s

The parametric secondary development of the Abaqus FEM software can achieve
the fast modelling of the flywheel model with different structural parameters, including
flywheel material, constraints, mesh, etc. Figure 5 shows the fast modelling of the flywheel
FE model with different shape parameters.

Aerospace 2022, 9, x FOR PEER REVIEW 9 of 16 
 

 

For the typical working environment of flywheels in engineering applications, the 
maximum speed and angular acceleration of flywheel are specified in the satellite atti-
tude and orbit control design. The flywheel optimisation provided in this work was 
based on a case encountered in the project, where the flywheel design requirements 
stipulated that the maximum speed be 6000° rad/s, and the maximum angular accelera-
tion be 5° rad/s2. During optimisation, the worst working state of the flywheel was se-
lected for optimisation; that is, the flywheel speed just reached the highest value (6000° 
rad/s), and the angular acceleration was 5° rad/sଶ (it would change to 0° rad/s2 at the 
next moment). At this time, the inertia and rotation of the flywheel produced the largest 
centrifugal force and the largest stress, and it was closest to its own failure strength, as 
shown in Table 2. 

Table 2. Optimised applied flywheel conditions. 

Applied Condition Numeric Value 
Angular acceleration 5° rad/𝑠ଶ 

Speed 6000° rad/s 

The parametric secondary development of the Abaqus FEM software can achieve 
the fast modelling of the flywheel model with different structural parameters, including 
flywheel material, constraints, mesh, etc. Figure 5 shows the fast modelling of the fly-
wheel FE model with different shape parameters. 

 
(a) Model A 

 
(b) Model B 

 
(c) Model C 

 
(d) Model D 

Figure 5. Finite element rapid modelling. 

The grid type used for the above FE model was C3D10, and the number of grids 
was 9088. The C3D10 grid is a solid cell grid, suitable for isotropic materials of the metal 
class. 
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The grid type used for the above FE model was C3D10, and the number of grids was
9088. The C3D10 grid is a solid cell grid, suitable for isotropic materials of the metal class.

4. Results and Discussion
4.1. The Effect of the Optimisation Evaluation Factor Re

In multi-objective optimisation, the setting of different optimisation objectives affects
the final optimisation scheme results and how to weigh the proportion of multi-objective
parameters for the final high-performance flywheel inertia disc. This work used the
optimisation evaluation factor proposed above as the optimisation balance point. In
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order to explore the influence of the optimisation evaluation factor Re on the optimisation
results, Optimisation Model A and Optimisation Model B were established in this work.
The optimisation objective of Optimisation Model A does not include the optimisation
evaluation factor Re as follows:

Obj :


max Fre1

max J
min M

(21)

The optimisation objective of Optimisation Model B includes the optimisation evalua-
tion factor Re, as follows:

Obj :


max Fre1

max J
max Re
min M

(22)

Other conditions of the two optimisation models—such as constraints, optimisation
variables, and optimisation parameter settings—are the same, and the optimisation results
are shown in Figure 6.

Aerospace 2022, 9, x FOR PEER REVIEW 10 of 16 
 

 

4. Results and Discussion 
4.1. The Effect of the Optimisation Evaluation Factor Re 

In multi-objective optimisation, the setting of different optimisation objectives af-
fects the final optimisation scheme results and how to weigh the proportion of multi-
objective parameters for the final high-performance flywheel inertia disc. This work 
used the optimisation evaluation factor proposed above as the optimisation balance 
point. In order to explore the influence of the optimisation evaluation factor 𝑅𝑒 on the 
optimisation results, Optimisation Model A and Optimisation Model B were established 
in this work. The optimisation objective of Optimisation Model A does not include the 
optimisation evaluation factor 𝑅𝑒, as follows: 

𝑂𝑏𝑗: ൝max Fre1
max Jmin  𝑀  (21)

The optimisation objective of Optimisation Model B includes the optimisation eval-
uation factor 𝑅𝑒, as follows: 

𝑂𝑏𝑗: ൞max Fre1
max Jmax  𝑅𝑒min  𝑀  (22)

Other conditions of the two optimisation models—such as constraints, optimisation 
variables, and optimisation parameter settings—are the same, and the optimisation re-
sults are shown in Figure 6. 

 
(a) Fre1 (b) J (kg·m2) 

  
(c) M (kg) (d) Max_mises (pa) 

Figure 6. Comparison of the optimisation models. 

Compared with the results of the optimised models, it can be seen that there is little 
difference in the mass and the maximum Mises stress of Model A and Model B, as 

Figure 6. Comparison of the optimisation models.

Compared with the results of the optimised models, it can be seen that there is little
difference in the mass and the maximum Mises stress of Model A and Model B, as shown in
Figure 6c,d, respectively. The first-order vibration frequency of Model A is far less than that
of Model B, as shown in Figure 6a, indicating that the flywheel inertia disc stiffness obtained
by the optimisation scheme of Model A is far less than that of Model B. In Figure 6b, the
inertia of Model A is slightly larger than that of Model B. Overall, the optimisation model
considering the optimisation evaluation factor Re has a significant impact on the stiffness



Aerospace 2022, 9, 386 11 of 15

of the flywheel inertia disc, and a more comprehensive scheme can be obtained in terms
of performance.

4.2. Approximate Model

The partial approximate fit surfaces of the flywheel evaluation factor Re and the
flywheel first-order vibration frequency Fre1 in the optimisation objective are shown
in Figure 7. The R-squared values of the approximated surfaces are 0.998 and 0.985,
respectively, indicating that the RBF radial basis fitting model is a very good fit for the
flywheel simulation data.
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4.3. Initial Optimisation Analysis

This work provides results for four sets of initial optimisation under the same optimi-
sation agent model, as shown in Table 3.

Table 3. Initial optimisation results.

Initial
Optimisation

Result 1

Initial
Optimisation

Result 2

Initial
Optimisation

Result 3

Initial
Optimisation

Result 4

Genetic number 100 100 100 100
Genetic algebra 200 200 200 200

Gb1 0.005247 0.004786 0.004264 0.004578
Gb2 0.001003 0.001004 0.00104 0.001009
Gbt 0.002293 0.002165 0.002333 0.002529
jr1 0.002491 0.002455 0.002953 0.001921
jr2 0.002885 0.002806 0.002335 0.002886
xa 0.002628 0.003199 0.002598 0.002759
xb 0.005365 0.004449 0.005461 0.003509
xc 0.001019 0.001012 0.001085 0.001063

Fre1 4840.58 4539.18 4897.02 4920.32
J 1.54 × 105 1.56 × 105 1.48 × 105 1.57 × 105

M 0.024958 0.024941 0.02487 0.024866
Max_mises 1,857,300 1,906,100 1,815,200 1,776,900

Re 2.98 × 105 2.85 × 105 2.90 × 105 3.11 × 105

From the initial optimisation results, the optimisation objectives Re and Fre1 can
reach a good level, but the range of optimisation parameter results varies widely between
different optimisation groups, which may be due to two reasons: First, the optimisation
parameters have a small impact on the optimisation objectives, resulting in a large range of
their value distribution from the optimisation results. Second, the range of optimisation
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parameters is set too large, so the optimisation model cannot effectively find the global
optimal solution, and falls into the local optimal results. To address the above problems,
the optimisation algorithm can be improved and the model reconstructed using a more
widely adapted optimisation algorithm, which requires a longer period of fundamental
research, and is not suitable for engineering applications. In addition, the upper and
lower limits of the optimisation parameters can be narrowed to reduce the optimisation
difficulty. In this work, the optimisation model is re-updated for the upper- and lower-
bound intervals of optimisation parameters in the initial optimisation, and the number of
populations and genetic generations is increased to achieve the purpose of improving the
optimisation model.

4.4. Final Optimisation Result Analysis

The optimisation results of the improved model are less random, and the optimal
size parameters of the flywheel can be obtained, where the population is set to 100 and
the genetic generation is 200. The optimisation history curve of the flywheel performance
evaluation factor Re is shown in Figure 8.
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During the optimisation process, the Re value and the first-order vibration frequency
Fre1 gradually stabilise with the genetic algebra and, finally, arrive near the optimal solu-
tion, which is indicated by the red hexagram in Figure 8. From the stability of the final
optimisation value, the number of populations and the genetic algebra are reasonable. The
optimised optimisation parameters are replaced into the secondary development model to
obtain the shape characteristics of the flywheel in the final optimised state, as shown in
Figure 9.

The final optimised shape shows that the flywheels Xa, Xb, and Xc are smaller, which
can effectively reduce the weight of the flywheel. Jr1 > Jr2, which means that the effect of
Jr2 on the flywheel efficiency is smaller than that of Jr1 when the flywheel is chamfered.
The inertia is mainly generated at the periphery of the flywheel, i.e., the size of Gb1 and
Gb2 is also higher. From the overall optimisation point of view, the effectiveness of the
flywheel is ensured by the combined effect of its dimensional parameters, which is also
closely related to the optimisation objectives and constraints of the flywheel. Figure 10
shows the finite element simulation results of the flywheel in the optimal solution state.
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Figure 10a shows the Mises stress distribution cloud of the flywheel as a whole in the
optimised state, and its overall level is much smaller than the yield stress of the material,
so the strength of the flywheel in this state satisfies the demand. In the flywheel’s working
condition, the maximum Mises stress generated by the speed and angular acceleration is
concentrated on the round corner Jr1, and the larger Jr1 can effectively prevent the stress
concentration, which is the reason that Jr1 > Jr2. The Mises stress level near the centre of the
flywheel is lower, but this is the result of not considering the frictional effect of the motor
on the centre of the flywheel. In this work, the parameters at the centre of the flywheel are
set according to the values of the existing test flywheel, so there is no problem of flywheel
root damage, and the parameters at the centre of the flywheel are not optimised parameters.
Figure 10b shows the comprehensive displacement–deformation cloud of the flywheel in
the optimal state, where the maximum deformation of the flywheel occurs at the periphery
away from the part connection under the action of centrifugal force. The deformation of
the flywheel in this state is very small in terms of the deformation magnitude, and no
interference caused by the deformation occurs with other parts of the satellite platform.

The specific parameters of the optimisation results and the alignment with the initial
value are shown in Figure 11.
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In the above figure, the initial values are the relevant data obtained from the simulation
under the original flywheel shape parameters. Compared with the initial values, the
optimised flywheel has greatly improved performance in all aspects. Under the premise of
22.66% reduction, the inertia increased by nearly 30.16%, the first-order vibration frequency
increased by 38.06%, and the maximum Mises stress was reduced by 19.756%. From the
perspective of the optimisation effect, the mass of the flywheel inertia plate decreased by
22.66% on the premise of ensuring the improvement of stiffness after optimisation. The
maximum Mises stress reduction indicates that the stress distribution is more reasonable,
and effectively reduces the risk of flywheel failure. The above results and data show that in
practical engineering applications, the appropriate optimised intelligent algorithm to design
the flywheel can effectively improve the overall efficiency of the flywheel—especially for
micro/nano-satellite platforms, which are particularly sensitive to weight.

5. Conclusions

Based on the actual working conditions of the micro/nano-satellite flywheel, this paper
proposes the flywheel optimisation evaluation factor for evaluating the structural efficacy of
the flywheel. Parametric finite element analysis is used to realise the rapid construction of
finite element models under different shapes and avoid the repeated interface operation to
meet the requirements of large-scale repeated modelling in the flywheel optimisation model.
In order to ensure the accuracy of the finite element calculation while greatly shortening the
calculation time, the RBF agent model is used instead of the finite element software calculation.
The approximate model reduces the optimisation time for a set of optimised models from about
8 days to 5 min. Through the agent model and genetic algorithm (NSGA-II), the optimisation
of the micro/nano-satellite platform flywheel shape, and for the genetic algorithm in
the local optimal phenomenon, puts forward the initial optimisation parameter variable
method to determine and narrow the upper and lower limits of the optimisation parameters
in the optimisation model, and improves the optimisation quality and efficiency. Finally,
the flywheel simulation optimisation results are analysed, the optimised flywheel mass is
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greatly reduced, the inertia and vibration frequency are kept in the ideal range, the load
allowance of the micro/nano-satellite platform system is improved, and the structural
optimisation of the micro/nano-satellite is obtained. The results show that the optimised
flywheel has significant performance improvements in quality, stiffness, and inertia. This
paper provides some references for the design of micro/nano-satellite flywheels with
certain engineering significance.
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