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ABSTRACT 

In this paper, we study and answer the following fundamental problems concerning classical equilibrium statistical me- 
chanics: 1): Is the principle of equal a priori probabilities indispensable for equilibrium statistical mechanics? 2): Is the 
ergodic hypothesis related to equilibrium statistical mechanics? Note that these problems are not yet answered, since 
there are several opinions for the formulation of equilibrium statistical mechanics. In order to answer the above ques- 
tions, we first introduce measurement theory (i.e., the theory of quantum mechanical world view), which is character-
ized as the linguistic turn of quantum mechanics. And we propose the measurement theoretical foundation of equili- 
brium statistical mechanics, and further, answer the above 1) and 2), that is, 1) is “No”, but, 2) is “Yes”. 
 
Keywords: The Copenhagen Interpretation; Probability; Operator Algebra; Ergodic Theorem; Quantum and Classical 

Measurement Theory; Liouville’s Theorem; The Law of Increasing Entropy 

1. Introduction 

Recently in [1-6] we proposed (classical and quantum) 
measurement theory, which is characterized as the lin- 
guistic (or, metaphysical) turn of quantum mechanics. As 
seen in [1-6], this theory includes several conventional 
system theories (e.g, quantum system theory, statistics, 
dynamical system theory and so on). Also, for the phi- 
losophical aspect of measurement theory (called the qu- 
antum mechanical world view), see [5]. And thus, we be- 
lieve that measurement theory is one of the most fun- 
damental theories in science. 

Note that there are several opinions ( cf. [2,3,7-9] ) for 
the formulation of equilibrium statistical mechanics, and 
hence, there are several opinions for the problems 1) and 
2) mentioned in the abstract. 

The purpose of this paper is to reinforce our method [2, 
3], or equivalently, to clarify the principle of equal pro- 
bability and the ergodic hypothesis in the light of mea- 
surement theory [4,5] (i.e., Axioms 1 and 2, Interpreta- 
tion (E) mentioned in the following section). 

2. Measurement Theory (Axioms 1 and 2, 
Interpretation) 

In this section, according to [4], we explain the outline of 
measurement theory (or in short, MT).  

Measurement theory is, by an analogy of quantum me- 
chanics (or, as a linguistic turn of quantum mechanics), 
constructed as the mathematical theory formulated in a 

certain -algebra *C A  (i.e., a norm closed subalgebra 
in the operator algebra  B H  composed of all bounded 
operators on a Hilbert space H, cf. [10,11] ) as follows:  

(A)  
 

 
 (language) Axiom 1 Axiom 2

[MT] = causalitymeasurement   

For completeness, note that measurement theory (A) is 
not physics but a kind of language based on “the quan- 
tum mechanical world view” (cf. [5]). 

When = ( )cA B H , the -algebra composed of all 
compact operators on a Hilbert space H, the (A) is called 
quantum measurement theory (or, quantum system the- 
ory), which can be regarded as the linguistic aspect of 
quantum mechanics. Also, when A is commutative (that 
is, when A is characterized by , the -algebra 
composed of all continuous complex-valued functions 
vanishing at infinity on a locally compact Hausdorff 
space 

*C

 0C  *C

  (cf. [10])), the (A) is called classical measure- 
ment theory. Thus, we have the following classification: 

(B1) 
 
 0

quantum MT (when )
MT

classical MT (when )
CA B H

A C


  

 

Hence, we consider that   
(B2) the theory of classical mechanical world view  

= classical measurement theory in (B1)  
  MT (i.e., the theory of quantum mechanical 
world view).  

And we never consider that  
(B3) the theory of classical mechanical world view  
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= Something like Newtonian mechanics  
+ Kolmogorov’s probability theory [12],  

which may be usually called dynamical system theory. It 
should be noted that Ruelle’s method (cf. [7]), which is 
the most authorized approach to equilibrium statistical 
mechanics, is based on the (B3). Thus, our interest in this 
paper may be regarded as our method [2,3] in (B2) versus 
Ruelle’s method [7] in (B3) . 

Now we shall explain measurement theory (A). Let 
  A B H  be a -algebra, and let *C *A  be the dual 

Banach space of A. That is, A*  = {   is a continuous 
linear functional on A }, and the norm *A  is defined  

by     ( )=sup : such that 1B HA FFF  


F A .  

Define the mixed state  *A   such that * = 1
A

 
and 


  0 for all hat 0FF such tF A    . And put  

   * * = .is amixed statem AA  S  

For example, note that 
0     *

1
m mMC  S  = 

{   is a measure on  such that    = 1 


}. A 
mixed state  *m A S  is called a pure state if it 
satisfies that  1 2= 1  

 *

 for some 

1 2, m
A  S  and 0 < < 1  implies 1 2= =   .  

Put   *p   *= m ,| is a purestateA A S S

which is called a state space. It is well known (cf. [10]) 
that    * =p

cB HS {u u  (i.e., the Dirac notation)  

| = 1 pSHu , and     *
0C  =  00

   is a point 

measure at 0  , where      00
f d f   

  

  0f C    . The latter implies that   C S *p
0

 
can be also identified with  (called a spectrum space 
or  maximal ideal space) such as  



  *
0 (spectrum space)

(state space)

p C     S    (1) 

In this sense, the  is also called a state space in 
classical measurement theory. 



Here, assume that the -algebra *C   A B H  has 
the identity I . This assumption is not unnatural, since, 
if I A , it suffices to reconstruct the above A such that 
it includes  A I . According to the noted idea (cf. [13]) 
in quantum mechanics, an observable  O := , ,X F F  in 
A  is defined as follows:  

(C1) [Field] X  is a set, , the power set of ( 2XF 
X ) is a field of X , that is, “ 1 2, 1 2F F     ”, 

“ \F X F ”.  
(C2) [Finite additivity] F  is a mapping from F to A 

satisfying: 1): for every F ,  is a non-negative 
element in 

 F 
A  such that  0 F I   , 2):   = 0F   

and   =F IX , where 0 and I is the 0-element and the 
identity in A respectively. 3): for any 1 2, F    such 
that , it holds that 

.  
1 2 =

F F
 

  

   F 1 2 1 2

For the further argument (e.g., 


 -field, countably 

additivity, the -algebraic formulation, etc.), see [4, 
6].  

*W

With any system , a -algebra S *C   A B H

 *

 can 
be associated in which the measurement theory (A) of 
that system can be formulated. A state of the system S is 
represented by an element  p

A S  and an  ob- 
servable is represented by an observable O := ( , , )X F F  
in A. Also, the  measurement of the observable  for 
the system  with the state 

O
S   is denoted by 

 [ ]O,M A S   (or more precisely, 

  [ ]MA X F O := , S, , F ). An observer can obtain a mea-  

sured value x ( X ) by the measurement  [ ]O,M A S  . 
The Axiom 1 presented below is a kind of mathema- 

tical generalization of Born’s probabilistic interpretation 
of quantum mechanics. And thus, it is a statement with- 
out reality.  

 1Axiom M .easurement  The probability that a mea- 
sured value x ( X ) obtained by the measurement 

  [ 0]O := , SX F M , , FA  belongs to a set  F   is 
given by   0 F  . 

Next, we explain Axiom 2 in (A). Let  be a tree, 
i.e., a partial ordered set such that 1 3t  and 2 3

( ,T
t

)
t t  

implies 1t t2  or 2 1t t . Assume that there exists an 
element 0t T , called the root of T, such that 0t t  
( t T  ) holds. Put   1 2t t2 =T

2
1 2, Tt t  . The fa-  

mily  A A
2

1 2
,1 2 1 ( , )

t t t
t t T2t

 :  is called a Markov re- 

lation ( due to the Heisenberg picture), if it satisfies the 
following conditions (D1) and (D2). 

(D1) With each t T , a -algebra *C tA  is associ- 
ated.  

(D2) For every   2
1 2, Tt t  , a Markov operator 

1 2 2, :t t t 1t
A A

= 


1 3,t t
 is defined. And it satisfies that  

1 2 2 3, ,t t t t  holds for any ,  1 2,t t   2
2 3,t t T .  

The family of dual operators  

    1 2 2

* *
, 2( , )1 2

: m m
t t t

t t T
A A

 


1

*
t S S  is called a dual Mar- 

kov relation (due to the Schrödinger picture). Also, when  

     1 2 1 2

* *
,

p
t t t t S Sp A *A  holds for any   2

1 2, Tt t  ,  

the Markov relation is said to be deterministic. 
Now Axiom 2 in the measurement theory (A) is pre- 

sented as follows: 
 2 Causali .Axiom ty  The causality is represented by  

a Markov relation  1 2 2 1
1 2

, 2( , )
:t t t t t t T

A A
 

  . 

Further, we have to explain how to use Axioms 1 and 
2 as follows. That is, we present the following interpre- 
tation (E) [=(E1) – (E4)], which is characterized as a kind 
of linguistic turn of so-called Copenhagen interpretation. 
That is, we propose ( cf. [4,5]): 

(E1) Consider the dualism composed of observer and 
system( =measuring object). And therefore, observer and 
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system must be absolutely separated.  
(E2) Only one measurement is permitted. And thus, the 

state after a measurement is meaningless since it can not 
be measured any longer. Also, the causality should be 
assumed only in the side of system, however, a state 
never moves. Thus, the Heisenberg picture should be 
adopted.  

(E3) Also, the observer does not have the space-time. 
Thus, the question: When and where is a measured value 
obtained? is out of measurement theory.  

Thus, we say that   
(E4) there is no probability without measurement.  
Since measurement theory is a kind of language, the 

spirit is based on Wittgenstein’s famous statement: “the 
limits of my language mean the limits of my world”. Thus, 
the (E3) says, for example, that Schrödinger’s cat is out 
of the world of measurement theory. 

3. Equilibrium Statistical Mechanics in 
Measurement Theory 

3.1. Statements Concerning Axiom 2 (Dynamical 
Aspect; Ergodic Hypothesis) 

3.1.1. Equilibrium Statistical Mechanical Phenomena 
Assume that about  particles (for example, 
hydrogen molecules) move in a box. It is natural to 
assume the following phenomenas 1)-4) 

24( 10 )N 

1) Every particle obeys Newtonian mechanics.  
2) Every particle moves uniformly in the box. For 

example, a particle does not halt in a corner.  
3) Every particle moves with the same statistical 

behavior concerning time.  
4) The motions of particles are (approximately) 

independent of each other.  
In what follows we shall devote ourselves to the pro- 

blem: 
(F) how to describe the above equilibrium statistical 

mechanical phenomenas 1)-4) in terms of measurement 
theory.  

For completeness, again note that measurement theory 
is a kind of language. 

3.1.2. About 1) 
In Newtonian mechanics, any state of a system composed 
of  particles is represented by a point  

(position, momentum) = 

24( 10 )N  ( , )q p

3 =1, )( 1 2 3 1 2( , , , , N
n n ) 

in a phase (or state) space 
n n nq q q p p

6
n np

N 6: NH . Let  be a 
Hamiltonian such that 



  
    

1 2 3 1 2 3 =1

2

1 2 3 =1
=1 =1,2,3

, , , , ,

= ., ,
2 particle mass

N

n n n n n n n

N Nkn
n n n n

n k

H q q q p p p

p
U q q q

 
 

  
 

(2) 

Fix . And define the measure > 0E E  on the energy  

surface      6 =, ,N

E
H Eq p q p    such that  

   

 

1

6 1= d,

, the Borel field of
E

E NB

E

H mq pB

B B

 






  
      (3) 

where 

 
1/2

2 2

=1 =1,2,3

=,
N

n k kn kn

H H
H q p

p q

                     
   

and 6 1Ndm   is the usual surface measure on E . Let  

 
< <

E
t t


 

 be the flow on the energy surface E  in- 

duced by the Newton equation with the Hamiltonian H, 
or equivalently, Hamilton’s equation:  

 

d d
= , =

d d

.= 1, 2,3, = 1,2, ,

kn kn

kn kn

q p
,

H H

t p t q

k n N

 





      (4) 

Liouville’s theorem ( cf. [9]) says that the measure E   

is invariant concerning the flow . Defi- 

ning the normalized measure 

  < <
E

t t  

E  such that 
 

E
E

E E








, 

we have the normalized measure space  , ,
EE EB  . 

Putting   0= = E EA C C   (from the compact- 
ness of E ), , , =T   = ,t   q pt t 1 2 2 1, = E

t t t t   ,  

1 2 ,1 21 1

*
, (t tt t t t   )=    

1t E  , we define the deter-  

ministic Markov relation 

    1 2
1 2

, 2( , )
:t t E E t t T
C C

 
    in Axiom 2. 

3.1.3. About 2) 
Now let us begin with the well-known ergodic theorem 
( cf. [9, 14]). 

For example, consider one particle P1. Put  


1P
= ES   a state   such that the particle 1  

always stays a corner of the box}. Clearly, it holds that 

1

P

P ES  . Also, if  E S 
1 1t P  , then 

the particle 1  must always stay a corner. This contra- 
dicts 2). Therefore, 2) means the following:  

PS  0 <t 
P

2)’ [Ergodic property]: If a compact set 
 , =ES S     satisfies   E

t SS   0 <t  , 
then it holds that = ES  .  

The ergodic theorem (cf. [14]) says that the above 2)’ 
is equivalent to the following equality:  

      

 

0
((state) space average) (time average)

0

1
=d dlim

, ( ),

E

T
EE t

T

E E

f f t
T

f C




   

 






      

 



 

After all, the ergodic property says that if T is su- 
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fficiently large, it holds that  

      0

1
.dd

E

T
E

E t
f f t

T




   




         (5) 

Put  
d

=dT

t
m t

T
. The probability space 

  [ , ], ,, T TB mT      (or equivalently, 

 [0, ][0, ], ,T TT B m  ) is called a (normalized) first staying 
time space, also, the probability space  , ,

EE EB   is 
called a (normalized) second staying time space. Note 
that these mathematical probability spaces are not related 
to probability” ( cf. Section 3.2). 



 )

Remark 1. [About 2)’]. In [2,3], we started form the 
mathematical statement 2)’. In this paper, this is im- 
proved by the phenomenological statement 2). 

3.1.4. About 3) and 4) 
Put . For each  24= 1,2, , 10NK N  ( Nk K

  6N  
, de- 

fine the coordinate map  such 
that  

6
k E  π :

 


1 2 3 1 2 3 =1

1 2 3 1 2 3

π ( ) = π ( , )

= π , , , , ,

= , , , , ,

k k

N
k n n n n n n n

k k k k k k

q p

q q q p p p

q q q p p p






     (6) 

for all  

   
 

1 2 3 1 2 3 =1

6

= , , , , ,,
N

n n n n n n n

N
E

q q q p p pq p 

  
 

Also, for any subset K , 
define the distribution map 

  24= 1,2, , 10NK N  
  ( ) 6

1: mN
K ED 

   6M   such that  

 
  ( , ) 6

( , )

1
= ( , )

#
q p N

K q p Ek
k K

D q p
K




     

where  # K  is the number of the elements of the set K.  
Let 0  E   be a state. For each  Nn K , we de- 
fine the map  such that   0 6: 0,n T  X

        0
0= π 0,E

n n tX t Tt        (7) 

And, we regard  0

=1

N

n n
X   as random functions on the  

probability space   [0, ], ,0, T TB mT  . Then, 3) and 4) 
respectively means 

3)’  0

=1

N

n n
X   is a sequence with the approximately  

identical distribution concerning time. In other words, 
there exists a normalized measure E  on  (i.e., 

) such that: 

6
 6

1
m

E M  

       

 

0

6

:0,

, = 1, 2, ,

T nm t XT t

B n N

  

 0

=1

N

n n
X 

for any 

E 





   (8) 

4)’  is approximately independent, in the 

sense that,  24
0 1, 2, , ( 10 )K N   such that 

 01 # K N  (that is, 
 0#

0
K

N
 ), it holds that  

       
       .:0, Bt XT  


  

0
6

0
6

0

0: ,0,T k k

T k k
k K

Bm t X k KT t

m t







  

  

The following important remark was missed in [2,3]. 
This is the advantage of our method in comparison h 
Ruelle’s method ( cf. [7]). 

 wit

Remark 2. [About the time interval  0,T ]. For exam- 
ple, as one of typical cases, consider the motion of 1024 
particles in a cubic box (whose long side is 0.3 m). It is 
usual to consider that averaging velocity = 25 10 m s , 
mean free path = 710 m . And therefore, the collisions 
rarely happen among  0# K  particles in the time inter- 
val  0,T , and therefore, the motion is “almost inde- 
pendent”. For example, putting   10

0# = 10K , we can 
cal-culate the number mes a certain particle collides 
with 

of ti

0K -particles in [0,T] as  

 
124

27
10

10 5 105 1010
10

T T


  5     
 

. Hence, in  

order to expect that 3)’ and 4)’ hold, it suffices to 
consider that 5T   seconds. 

Also, we see, by (7) and (5), that, for  0 NK K  
such that  01 # K N  ,  

      
     
         

     
    

6

0

0

0

1

0
0

1

0

1

0

: ,

: π ( ,0,

π= :0,

π

.π

E
k t k

E kkT t k K k K

kkE k K k K

k
kE k K k K

B k K

B k KT

m t T

 

 







 



 



 



  

   
 









(9) 

Particularly, putting 

00,T k km t XT t
   6 0

0 0= Tm t



 0 =K k , we see:  

        0 1: π0,T k E k
m t XT t

   

 6 .B







  (10) 

Hence, we can describe the 3) and 4) in terms of  

  =1
π

N

n n
 in what follows. 

Hypothesis A [3) and 4)]. Put 
Le

 241, 2, , ( 10 )K N  . N

t H, E, E , E , 6π :k E    be as in the above. 
Then, summing up 3) and 4), by (9) we have:   

(G)  6

=1
π :

N

k E k
    is a t 

random va ble wi al distribution in the 

pproximately independen  

ria s th the identic
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sense that there exists  6
1

m
E M    such that  

 


0

1
π

k K

E




 

        (11) 
 

0

= p

.

E

k k K





 “

for all 

roduct measure”

 and  01 # K N
 

0 NK K .  
Also, a state  , Eq p

( , )

N

q p
  is called an

state if it satisfies 
  equilibrium 

K ED  . 

3.1.5. E ypothergodic H sis 
N e following th

ic hypothesis]. Assume Hypothesis 
). Then, for any 

ow, we have th eorem ( cf. [2,3]): 
Theorem A [Ergod

A (or equivalently, 3) and 4)
 = (0), (0)0 Eq p  , it holds that  

       
 

0( ( ), ( ))

24

:0,

, = 1, 2, ( 10 )

N

q t p t
K T kD m t XT t

B k N

     

 
  (12) 

6

for almost all t. That is, 

,

 0 : (12)0,Tm t does not holdT   1 . 

Proof. Let 0 NK K  such that  0 01 # K N N  

(that is, 
 

 0

0

0
#

#1 K

K N
  ). Then, from Hypothesis A,  

th  cf. [12]) says te law of large numbers ( hat  

 
0

( ( ),t ( )) 1πq p t
K E k ED           (13) 

e t. Considfor almost all tim er the decomposition KN =  

 (1) (2) ( ), , , LK K K . (i.e., ( )=1
=

L

N ll
K K ,  

 ( ) ( ) = =l lK K l l  
 = 1, 2, ,l L . From

), where 
 (13), 

( )# lK N  
it holds that,

0   
 for each k 

 24= 1, 2, , ( 10 )N  ,  

 

( )

=1

1
( ) ,

l

l

lK   

  

    
 

( ( )( ( ), ( ))

( )

=1

#=

1
# π

qq t p t
KK lN

L

E E k E
l

K DD
N

N

 

    
  (14) 

for almost all time t. Thus, by (10), we get (12). Hence, 
the proof is completed. 

We believe that Theorem A is just what sh
represented by the “ergodic hypothesis” such that  

in the 
abstra uiva- 
lently thesis 
should d that the 
er

), ( )1 L
t p t

ould be 

“population average of N particles at each t” 
= “time average of one particle” 

Thus, we can assert that the ergodic hypothesis is re- 
lated to equilibrium statistical mechanics (cf. the 2) 

ct). Here, the ergodic property 2)’ (or eq
rgodic hypo, equality (5)) and the above e

 not be confused. Also, it should be note
godic hypothesis does not hold if the box (containing 

particles) is too large. 

Remark 3 [The law of increasing entropy]. The en- 
tropy  ,H q p  of a state   , Eq p   is defined by  

     ( , ) ( , )= log :, ,
N N

q p q p
E K KEH k D Dq p q p         

where  

    3= !tantannconstant
Nk N  Plank consBoltzm

Since almost every state in E  is equilibrium, the 
entropy of almost every state is equal  log E Ek   . 

 that the law of in- Therefore, it is natural to assum
creasing entropy holds. 

3.
ent) 

echanics. For completeness, note 

t related 
to pr

ment. 

cal system at almost all time t can be re- 
ga

he particles whose states belong to 

e

2. Statements Concerning Axiom 1 
(Probabilistic Aspect; Measurem

In this section we shall study the probabilistic aspects of 
equilibrium statistical m
that   

(H) the argument in the previous section is no
obability 

since Axiom 1 does not appear in Section 3.1. Also, 
recall the (E4), that is, there is no probability without 
measure

Note that the (12) implies that the equilibrium stati- 
stical mechani

rded as: 
(I) a box including about 1024 particles such as the 

number of t
 6B

  is given by   2410E  .  
Thus, it is natural to assume as follows. 
(J) if we



, at random, choose a particle from 1024 par- 
ticles in the box at time t, then the probability that the 
state   6

1 2 3 1 2 3, , , , ,q q q p p p   of the particle belongs 
 6  is given bB y  to  E  . 

In what follows, we shall represent this (J) in terms of 
measurements. Define the observable 

 6
6

00 , ,O = B F


  in  EC   such that  

  
 

    
 

  

0

6

,
#

NK

N

q p
K

B

     
 

    .               N
E  6

#

, ,             15

k

q p

 
 

 
  Thus, we have the measurement 

( , ) π ,
= q p k q p

DF
  

  6
0 0

6
00( ) ( , )

, ,O := ,M
EC q pt

B F S  
 

 . Then we say,  

by Axiom 1, that 
sured value obtained (K) the probability that the mea

by the measurement  

  6
0 0

6
00( ) ( , )

, ,O := ,M
EC q pt

B F S   
   belongs to  

 6B  is given by   E  . That is because Theo- 
rem A says that      0 0 0,tF q p  E   (almost 
every time t). 
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Also, let    :E
t E EC C    

erator determined by 
ion 3.1

, we must take a 
  for each tim

Fuzzy Theory,” Fuzzy Sets and Systems, Vol. 90, No. 3, 
1997, pp. 277-306. doi:10.1016/S0165-0114(96)00114-5  

be ic 
Markov op the co ap 

e 
(E2) says th

e, Examples 1 and 3
in [4]. 

 N particles in box
 

 a determinist
ntinuous m

:E
t E   E  (cf. Sect .2). Then, it clearly holds 

0 0O = OE
t . And

 0 [(( )
O ,M

EC
S

[2] S. Ishikawa, “Mathematical Foundations of Measurement 
Theory,” Keio University Press Inc., Tokyo, 2006.  

( ), ( ))]k kq t p t

Ho erpretation 
1 2, , , , ,k nt t t t  .  [3] S. Ishikawa, “Ergodic Problem in Quantitative Language,” 

Far East Journal of Dynamical Systems, Vol. 11, No. 1, 
2009, pp. 33-48.  

wever, Int at it suffices to take 
the simultaneous measurement 

[ ]( (0), (0))
,

q p
S  . Here, for the simultaneous 
On

k , see, for instanc
 0=1( )

OM
E

n
kC  

observable 0=1

[4] S. Ishikawa, “A New Interpretation of Quantum Mecha- 
nics,” Journal of Quantum Information Science, Vol. 1, 
No. 2, 2011, pp. 35-42.  

 
 

[5] S. Ishikawa, “Quantum Machanics and the Philosophy of 
Language: Reconsideration of Traditional Philosophies,” 
Journal of Quantum Information Science, Vol. 2, No. 1, 
2012, pp. 2-9. 

Remark 4. [The principle of equal a priori probabi- 
lities]. The (J) (or equivalently, (K)) says choose a par- 
ticle from , and not choose a state from 
the state space E

equal 
. Thus, as mentioned in the abstract, 

the principle of (a priori) probability is not related 
to

[6] S. Ishikawa, “A Measurement Theoretical Foundation of 
Statistics,” Journal of Applied Mathematics, Vol. 3, No. 3, 
2012, pp. 283-292.   our method. If we try to describe Ruele’s method [7] 

in terms of measurement theory, we must use statistical 
measurement theory ( cf. [2,6]). However, this trial will 
end in failure. Also, our recent report [15] will promote 
the understanding of measurement theory. 

4. Conclusions  

Our concern in this paper may be regarded as the pro- 
blem: “What is the classical mechanical world view?” 
Concretely speaking, we are concerned wit

[7] D. Ruelle, “Statistical Mechanics, Rigorous Results,” World 
Scientific, Singapore, 1969.  

[8] G. Gallavotti, “Statistical Mechanics: A Short Treatise,” 
Springer Verlag, Berlin, 1999.  
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Berlin, 1983. 
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demic Press, Waltham, 1990.  h the problem:

hus, “our method [2,3] vs. Ru
aper, we added important remarks 

 
“(B2) vs. (B3)”, and t
method [7]”. In this p

ele’s [11] J. von Neumann, “Mathematical Foundations of Quantum 
Mechanics,” Springer Verlag, Berlin, 1932. 

(i.e., Remarks 1 and 2) to our method [2,3], and streng- 
thened our method in the light of the mechanical world 
view [4,5]. 

Equilibrium statistical mechanics is of course one of 
the most fundamental theories in science. And it is sure 
that Ruele’s method [7] has been authorized for a long 
time. Therefore, we hope that our proposal will be exa- 
mined from various view points. 

[12] A. N. Kolmogorov, “Foundations of the Theory of Prob-
ability (Translation),” 2nd Edition, Chelsea Pub Co, New 
York, 1960.  

[13] E. B. Davies, “Quantum Theory of Open Systems,” Aca-
demic Press, Waltham, 1976.  

[14] U. Krengel, “Ergodic Theorems,” Walter de Gruyter, 
Berlin, 1985. doi:10.1515/9783110844641 

[15] S. Ishikawa, “The Linguistic Interpretation of Quantum 
Mechanics,” 2012. http://arxiv.org/abs/1204.3892 

REFERENCES 
[1] S. Ishikawa, “A Quantum Mechanical Approach to a  
 

http://dx.doi.org/10.1016/S0165-0114(96)00114-5
http://en.wikipedia.org/wiki/Singapore
http://dx.doi.org/10.1515/9783110844641
http://arxiv.org/abs/1204.3892

