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ABSTRACT 
 

Thermal energy storage (TES) can be utilized as supplemental platforms for improving operational 
reliability and systemic efficiency in variety of industries, such as for reducing water usage in power 
production (food-energy-water/ FEW nexus), chemical and agro-process industries and for 
improving sustainability (e.g., desalination), etc. Phase change materials (PCMs) can be used in 
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TES due to their high latent heat storage capacity during phase transformation. Inorganic PCMs 
typically have the highest latent heat capacity and are attractive for their ability to store the larger 
quantities of thermal energy in small form factors while conferring respectable power ratings 
(however, they suffer from compromised reliability issues, that often arise from the need for 
subcooling). Subcooling (also known as supercooling) is a phenomenon where the temperature 
needs to be reduced substantially below the melting point to initiate solidification. A technique for 
obviating subcooling issues is to allow a small portion of the PCM to remain un-melted. This allows 
the PCM to initiate nucleation from the un-melted portion of PCM (this is termed as the “cold finger” 
technique). Thus, reliability is enhanced at the expense of substantial reduction in storage 
capacity. A fundamental challenge for using this technique is the inability to reliably predict and 
control the amount of melt fraction in the total volume of the PCM (such that a target amount of the 
PCM remains solidified or un-melted at the end of each melt-cycle during repeated melting and 
solidification of the total mass of PCM). However, using Machine Learning (ML) techniques, this 
deficiency can be addressed by reliably predicting and thus controlling the amount of melt fraction 
in the total volume of the PCM with a higher accuracy than conventional techniques (such as using 
multi-physics-based models or numerical solvers). Conventional techniques for predicting transient 
characteristics in real time control schemes typically leverage multi-physics-based models that are 
often effective only for a narrow range of operating conditions with concomitant disadvantages: 
they are highly sensitive to small variations in the measurement uncertainties and are therefore 
susceptible to large levels of error in the real time predictions (and are unreliable for 
implementation in diverse range of operating conditions). In this pioneering study, nearest neighbor 
search processes (such as radial basis functions) were utilized along with machine learning (ML) 
algorithm using a training data set to predict the PCM melt fraction and to demonstrate the 
feasibility (and efficacy) of this approach. This technique is simple to implement and is device 
independent as well as robust (i.e., it can be deployed successfully even under conditions where 
the sensors malfunction, such as thermocouples that are off-calibration). This technique was 
demonstrated successfully for predicting the melt fraction of a PCM with high accuracy and 
robustness. With this method, the melt fraction of a PCM can be accurately determined, which 
allows the maximum thermal capacity of a PCM to be utilized while mitigating reliability issues 
(such as subcooling) and enhancing the thermodynamic efficiencies of the TES platforms. Melting 
experiments were performed using a digital camera (for video recording) and a graduated cylinder 
containing PCM for monitoring the transient values of the melt fraction based on the height of the 
liquid phase of the PCM in the cylinder. An array of 3 thermocouples was mounted at specific 
heights within the body of the PCM to monitor the temperature transients at these specific location 
during the propagation of the melt front within the PCM. In the final stages of the melting process, 
the predictions from the ML algorithm was found to be more accurate (90~95% accuracy) than that 
of the conventional techniques based on physics-based solvers (~60% accuracy). The accuracy of 
the ML algorithm was low at smaller melt fractions (~30%) and improved substantially at higher 
melt fractions (~95%). Furthermore, the accomplishments of this study display the feasibility of a 
RBF ML method which can be implemented for the accurate prediction and control of a real world 
stochastic system which can exhibit nonlinear and chaotic dynamics which change over time.  
 

 

Keywords: Machine learning; radial basis function; thermal energy storage; phase change materials; 
experimental validation, stochastic prediction. 

 

ABBREVIATIONS 
 

PCM :  Phase Change Material  
TES :  Thermal Energy Storage 
ML :  Machine Learning 
ANN :  Artificial Neural Network 
ϴ :  Root mean square sum of temperature differences at any instant  
Ψ : Root mean square sum of temperature differences at any instant between training data 

and test case 
DAQ : Data Acquisition 
NI  : National Instruments 
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1. INTRODUCTION  
 

Phase Change Materials (PCM) are typically 
used in Thermal Energy Storage (TES) platforms 
since they confer the advantage of storing 
significant amounts of thermal energy in small 
form factors. PCM selection is often guided by 
the large enthalpy and the temperature for phase 
change (in addition to cost and reliability 
considerations). An ideal PCM for TES 
applications should possess high latent heat 
capacity. Associated considerations include: high 
specific heat capacity, high thermal conductivity, 
and small changes in specific volume during 
phase transition. Also, an ideal PCM has minimal 
environmental footprint (e.g., should be non-toxic 
and noncorrosive) [1].  
 

Careful consideration is needed for the choice of 
PCM for a specific TES platform or application. 
Each type of PCM has its own unique 
advantages and disadvantages. PCMs are often 
classified as organic, inorganic and eutectics. 
Organic PCMs (such as paraffins) are 
considered to be reliable but suffer from poor 
thermal characteristics (low storage capacity and 
poor power ratings). Inorganic PCMs (such as 
salt hydrates) typically possess very high latent 
heat capacity and higher thermal conductivity 
(than organic PCMs); however, suffer from 
reliability issues (due to subcooling issues and 
phase segregation [2] which occurs as a result of 
incongruent melting). This compromises the 
energy storage capacity of the TES during the 
phase change process (i.e., for initiating the 
nucleation within the volume of PCM during 
solidification cycle). Also, some salt hydrates can 
experience chemical degradation when 
repeatedly heated or cooled for multiple cycles of 
solidification and complete melting [3]. Salt 
hydrates also have poor nucleation 
characteristics. Significant volumetric changes 
during phase change and their corrosivity 
(especially to metal heat exchangers) are major 
impediments for universal applicability of salt 
hydrates in TES platforms as their long-term 
performance and reliability are often uncertain 
[4]. Prior attempts for controlling the subcooling 
of salt hydrates by the addition of suitable 
nucleating agents have shown some promise but 
are often associated with a cost burden of 
processing additional materials [5,6,7]. Also, the 
problem of phase segregation still remains 
unresolved. Various encapsulation techniques 
have been proposed and developed but the 
reliability and additional costs associated with 
these techniques can be a significant impediment 
[8].  

The low thermal conductivity of paraffin waxes 
results in lower power ratings for TES platforms 
[3]. Several authors have studied if the efficacy 
(and power ratings) of heat exchangers 
impregnated with PCM can be enhanced by 
using different types of configurations, such as, 
using finned tubes [9], metal matrices or metal 
foams and carbon foams [10]. In addition, 
petroleum-derived paraffin can have a significant 
environmental footprint, since their processing is 
associated with water usage and release of a 
significant amount of carbon to the atmosphere, 
both of which also potentially contribute to global 
warming issues [4].  

 
During the solidification process, some PCMs 
(especially inorganic PCMs) typically require 
some amount of subcooling (also known as 
supercooling) in order to initiate the nucleation 
process. After complete melting and as the 
solidification process is initiated, the PCM 
remains in the liquid phase when initially cooled 
to its phase transition temperature and a 
solidification is initiated only after the PCM is 
subcooled significantly below the phase 
transition temperature. This requires some 
amount of time (due to the thermal inertia of the 
mass of PCM) and hence, a significant portion of 
the time required for the solidification process is 
wasted in the process of initiating the phase 
transition (thus compromising the overall power 
rating of the TES platform as well as the 
operational reliability of the system). Subcooling 
is thus undesirable for practical engineering 
applications. The degree of subcooling is defined 
as the difference in the phase transition 
temperature and the temperature at which 
nucleation occurs (which can vary from one cycle 
to next during thermocycling, i.e., during 
repeated solidification and complete melting of 
the volume of PCM contained in a system, such 
as in a heat exchanger). The level of subcooling 
is typically ascertained using the T-History 
method [11] where the transient temperature 
profile of the PCM is recorded in a temperature-
controlled environment (such as in an oven). 
Subcooling is affected by various considerations, 
such as: homogeneous nucleation, 
heterogeneous nucleation, surface finish (of the 
container), presence of impurities (which can 
initiate nucleation and suppress subcooling) and 
the experimental conditions (e.g., temperature 
ramp rates). Impact of surface finish on the 
degree of subcooling was reported by Faucheux 
et al. [12] in their study involving freezing of 
aqueous ethanol. Influence of cooling rate on the 
thermo physical properties were reported by 
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Taylor et al. [13]. The effect of other experimental 
conditions such as mass, time of experiments, 
superheat temperature, etc. were reported by 
García-Romero et al. [14]. 
 

It is necessary to implement methods to induce 
nucleation and control the crystallization process 
in salt hydrates due to the impact of subcooling 
on the thermal performance of Latent Heat 
Thermal Energy Storage Systems (LHTESS). 
Subcooling in salt hydrates are addressed by 
adopting seeding techniques and leveraging 
dynamic nucleation methods. Seeding is the 
process of reducing the subcooling of the PCM 
by adding nucleating agents. Seeding is 
promoted more reliably by nucleating agents that 
possess similar lattice structure as the solidified 
PCM, in order to effectively reduce the degree of 
subcooling. This limits the choice of additives for 
a given PCM to attain suitable reduction in the 
degree of subcooling Mehling and Cabeza [15] 
Lane [16] performed a detailed review of seeding 
techniques. Other reports include: Shamberger 
and O’Malley [17] on Lithium Nitrate Trihydrate, 
Shin et al. [18] on Glauber Salt, Schroder and 
Gawron [19], Kimura and Kai [20] and Lane [21] 
on Calcium Chloride Hexahydrate.  
 
An attractive strategy for reducing subcooling in 
salt hydrates is the “cold finger technique”. In this 
dynamic nucleation technique, a chosen mass 
fraction of the PCM is maintained in solid state at 
the end of the melt cycle, and this solid mass of 
PCM is utilized for seamlessly initiating the 
nucleation process during the freezing cycle 
Meseguer, et al. [22]. However, this technique is 
limited in use as this is feasible only when the 
phase transition temperature of the PCM is 
above the ambient temperature. Other reports in 
the literature include dynamic nucleation 
techniques, such as, using high pressure and 
shock waves to initiate the solidification of PCM 
Günther, et al. [23]. Fig. 1 shows the typical 
temperature profile (transient) profile during the 
melting process for PCMs [24]. However, this 
plot would suffer from hysteresis issues in the 
event subcooling occurs during the solidification 
process. 
 
As mentioned before, an attractive technique for 
obviating subcooling issues is to allow a small 
portion of the PCM to remain un-melted, which 
then allows the PCM to solidify and nucleate 
starting from the un-melted portion of PCM (this 
is termed as the “cold finger” technique). Thus, 
the reliability of the TES platform is improved at a 
marginal expense to the storage capacity (since, 

complete melting of the total mass of PCM           
would have yielded higher storage capacity). 
One way to maximize the energy storage 
capacity of the TES would be to maximize the 
melt fraction without completely melting the 
PCM. This necessitates a reliable method for 
predicting the melt fraction as a function of time 
(as well as the time required to reach a particular 
melt fraction) in real time and based on the past 
history of the TES platform, such that a target 
amount of the PCM remains solidified or un-
melted at the end of the duty cycle. Multi-
physics-based models are finicky as they are 
very sensitive to measurement uncertainties and 
are often unreliable for deployment in real time 
predictions and commercial operations. These 
types of techniques that typically use multi-
physics-based prediction strategies are often 
effective for a narrow range of operating 
conditions with concomitant disadvantages: they 
are highly sensitive to small variations in 
measurement uncertainties, are finicky and are 
often unreliable for a variety of real-world 
operating conditions. However, using Machine 
Learning (ML) techniques, these issues can be 
obviated by reliably predicting [25] and thus 
controlling with higher accuracy than 
conventional techniques. 
 

In this study, nearest neighbor search processes 
(such as radial basis functions) were 
implemented in a Machine Learning (ML) based 
training algorithm. This technique is device 
independent and capable of predicting the melt 
fraction of a PCM with high accuracy and 
robustness. With this method, the melt fraction of 
a PCM can be determined accurately, which can 
be used for maximizing the energy storage 
capacity of a PCM in TES, while also mitigating 
reliability issues such as subcooling. Using this 
technique, the prediction of melt fraction for a 
PCM can be achieved with sufficiently high 
accuracy. The objective is to enable an user to 
predict the time required to reach a target melt 
fraction at any instant (based on the temperature 
distribution within a mass of PCM at that instant 
based on the history of the temperature 
transients within the PCM in prior melt cycles. 
This enables the energy storage capacity of the 
TES to be maximized (with certain degree of 
factor-of-safety) while minimizing the 
impediments to the reliable operation in each 
duty cycle (i.e., by targeting that a very small 
portion of the PCM remain un-melted in each 
cycle during melting in multiple duty cycles; 
where the environmental conditions can change 
by a wide margin – thus being robust in response 
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to wide variations in heat loss from the system 
depending on changes in the environmental 
conditions). This innovative and pioneering 
approach will allow for the maximization of the 
high storage capacity of PCMs (especially 
inorganic PCMs) while also improving their 
operational reliability (i.e., by obviating the 
drawbacks of subcooling issues which prevent 
their long-term applicability). The experimental 
results presented in this study demonstrate the 
robustness, feasibility and the high accuracy of 
the predictions for the range of melt fractions that 
have been implemented in this study. This 
enables the elimination of subcooling (and 
therefore improving the operational reliability) 
and in turn, maximizing the thermal performance 
(e.g., thermal energy storage capacity) of the 
PCM. Furthermore, this innovation is device 
independent and does not require the use of a 
complex new infrastructure to implement and 
integrate into a control system. In addition, this 
method is not affected by sensor malfunction 
(e.g., loss of calibration) of the temperature 
sensors (as long as, the temperature sensor 
reproduces the temperature trends with 
reasonable fidelity). Existing control systems can 
be retrofitted with this innovative technique and 
can be seamlessly integrated in real time (for 
real-time control) while the TES platform or 
system is in operation. 
 

2. EXPERIMENTAL PROCEDURE AND 
METHODOLOGY  

 

2.1 Experimental Apparatus and 
Procedure 

   

For the implementation of the machine learning 
algorithm (i.e., for reliably predicting the transient 
values of the melt fraction of a PCM undergoing 
melting), an initial test apparatus was 
constructed. PCM was placed in a measuring 
beaker (with a volume of 50 ml and a least count 
of 0.5 ml). This enabled the determination of the 
melt fraction of the PCM by visual observation of 
the meniscus of the liquid PCM (this is aided by 
the significant volumetric expansion upon 
melting). Four K-type thermocouples were 
utilized in these experiments. Three K-type 
thermocouples were mounted at specific 
locations within the beaker corresponding to 
30%, 60% and 85% melt fractions. The fourth K-
type thermocouple was used for recording the 
ambient air temperature. A plastic jig was 3D 
printed and was used to mount the 
thermocouples at specific locations. A nichrome 
spool was placed in the bottom of the beaker and 
was connected to an external power supply 

(which served as a heat source for melting the 
PCM). The PCM used was PureTemp29 with a 

melting point of 29℃. After the experimental 
apparatus was constructed (Fig. 3) and 
assembled, several experiments were conducted 
by varying experimental conditions during the 
melt cycles. The data obtained from these 
experiments were used for training the ML 
algorithm. The temperature distribution of the 
PCM and the melt fraction of the PCM was 
observed and recorded in these experiments.  
 

2.2 Data Analysis and Numerical 
Procedure 

 

Data analysis was performed using the 
experimental results to identify the key trends in 
the transient values of the melt fraction and the 
transient temperature distribution within the 
volume of the PCM (contained in a graduated 
cylinder). A new variable was proposed, and 

termed as the “[ΔT]
2
 variable” or “”(Fig. 2). This 

variable is the sum of the square of the 
differences for each of the data points (at a given 
instant in time) for each of the three 
thermocouple recordings within the PCM. This 
variable is used to predict the transient values of 
the phase transformation at a given location 
within the volume of the PCM. When a particular 
location within the PCM is undergoing phase 

transformation, the value of  (i.e., the value of  
[ΔT]

2
) at that particular location and at that 

instant in time is significantly greater than 1. As 
the PCM approaches the final stages of melting 

(or in the initial stages of melting), the values of  

(i.e., the value of  [ΔT]
2
) are observed to 

approach 1. As the whole mass of PCM achieves 

complete melting, the value of  (i.e., the value of 

 [ΔT]
2
) is observed to be less than 1. This 

additional parameter  therefore aids in reliable 
identification of the melt fraction of the PCM, thus 
improving the robustness of the ML algorithm. 
After the data acquisition in the experiments, a 
small portion of the data was allocated 
exclusively as the training data set. This 
exclusively allocated data was used as input for 
training the neural network algorithm (i.e., using 
a nearest neighbor radial basis function 
classification method). Equation (1) provides a 
formal mathematical description of this 

parameter, , (and is plotted in Fig. 2), as shown 
next: 
 









 

 
where, T0, T1, and T2 are the transient values of 
temperatures recorded by the thermocouples 
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mounted at locations corresponding to 30%, 60% 
and 85% melt fractions, respectively. 
 

For the successful implementation of the ML 
algorithm, the training data set along with training 
labels were generated initially. This was 
performed using the thermocouple data recorded 
by the digital data acquisition (DAQ) apparatus. 
The DAQ apparatus was procured from National 
Instruments (NI DAQ Board). The data recorded 
by the DAQ was automated using LabVIEW 
control software. Following this step, the 
temperature distributions within the PCM were 
recorded with respect to time using the 
thermocouple array that was mounted at precise 
locations within the PCM (i.e., in the measuring 
cylinder) using a 3D printed fixture.                     
As an example, Fig. 4 shows the transient plot of 
the three thermocouples mounted at different 
heights within the body of the PCM. The height of 
the liquid meniscus of the PCM within the 
measuring cylinder (with graduated markings) 
was visually observed and recorded using a 
digital image acquisition apparatus to obtain the 
transient profile of the melt fraction. The melt 
fraction was calculated based on the liquid level 
in the measuring cylinder (as the PCM 
undergoes significant volumetric change during 
the melting process). A typical transient plot of 
melt fraction is shown in Fig. 5. 
 

Hence, this enabled the generation of the training 
data set with corresponding training labels. 
Correlating the transient temperature data with 
the transient melt fraction data (Figs. 4 and 5), 
enabled the predictions with desirable accuracy. 
The temperature distribution recorded by the 

three thermocouples as well as the values of  
were plotted as a function of the melt fraction in 
Figs. 3 and 4. The training data consists of the 
temperature values (at each location of the 
thermocouple array mounted within the PCM 

volume) and the values of the  (i.e.,  [ΔT]
2
 ) 

parameter of the PCM, and the training labels 
are the respective values of the melt fraction of 
the PCM for each temperature data point (in 
essence, the data set inherently obviated the 
time stamps during the training step). Feeding 
this into the neural network, correlations were 
generated between a given temperature 
distribution and the respective value of the melt 
fraction of the PCM. 
 

3. RESULTS AND DISCUSSION 
 

The data processing for the initial training data 
sets for the neural network is then cross 
referenced and checked for validity and accuracy 

using another set of data recorded from separate 
experiments (validation data set). For the test 
case, only the transient temperature distribution 
of the PCM is provided and the algorithm is used 
to predict the melt fraction based on the 
correlations obtained from the training set. The 
predicted values are then checked with the 
actual values of melt fraction of the PCM (in 
order to determine the accuracy and validity of 
the predictions). The nearest neighbor radial 
basis function technique was used in this study 
and is shown below in Equations 2 and 3 (T 
denotes training data, while T’ denotes test data 
that is used for obtaining predictions for the 
instantaneous values of the melt fraction). A 
control parameter (Ψ) is generated which is 
equal to the sum of the square of the differences 
of the current temperature distribution of the test 
case (T’) and the prior data set (i.e., temperature 
distribution (T) is utilized as the training data set). 
This Ψ term is a numerical value representing 
the magnitude of distance (in multiple 
dimensions) a given temperature distribution in a 
test set is from a temperature distribution in the 
training set (which is also termed as a “Radial 
Basis Function”/ “RBF” in multi-dimensions). For 
example, a larger Ψ term equates to a larger 
difference between the testing and training 
temperature distribution and a smaller Ψ term 
corresponds to a smaller difference between the 
respective test and training temperature 
distributions. Hence, during a melting duty cycle, 
for a given instant in time, the real-time 
temperature distribution values recorded by the 
thermocouple arrays are used in the algorithm as 
the test case to calculate the Ψ terms across the 
entire array of temperature distributions in the 
historical training dataset. With this, an array of 
Ψ terms is generated for all values in time of the 
temperature distributions from the training set. 
From this training data set, the temperature 
distribution with the lowest Ψ term has the 
closest affinity to the test case. Thus, the melt 
fraction value assigned to the temperature 
distribution from the training set which has the 
smallest Ψ term at that instant is assigned as the 
predicted melt fraction to the respective test set 
as it is the training data value which most closely 
matches the current test set (due to the 
minimization of the Ψ term). An example plot 
accruing from this technique is shown below. Fig. 
8 shows a plot of the transient temperature 
profiles recorded by the three thermocouples 
within the testing apparatus during a melt cycle. 
The red arrow in the plot signifies a desired 
testing case to predict the melt fraction of the 
PCM at that instant (based on the temperature 



 
 
 
 

Shettigar et al.; JERR, 20(4): 70-84, 2021; Article no.JERR.65675 
 
 

 
76 

 

history leading up to that instant in the 
experiment). 
 
Based on this input temperature distribution as 
the test case, the machine learning algorithm 
was used to compare the compare the test case 
with the training data set (i.e., the entire set of 
temperature transients in temperature history 
contained in the training data set). This can be 
represented in an abstract sense, by generating 
Ψ terms encompassing all of the temperature 
transients in the training set. A visual example of 
this is provided in Fig. 9. The transient melt 
fraction from the training data set is plotted here. 
For each of these values of melt fraction at any 
instant, the respective values of the temperature 
transient are also associated from the training 
data in the RBF. Therefore, the Ψ terms 
generated during the experiments (the 
instantaneous temperature distribution at any 
instant within the recorded data is denoted by the 
red arrow in Fig. 6) are compared with that of the 
training data set (i.e., the temperature transients 
at a particular instant in time is plotted for the 
entire training data set). From this, the minimum 
value of the Ψ term can be obtained - which 
signifies that the particular training data for 
temperature distribution at this point most closely 
matches the testing temperature distribution 
(obtained in the experiment). Therefore, the 
respective melt fraction (used as the training 
label, which corresponds to the training 
temperature distribution data in the training 

dataset) with the lowest Ψ term is assigned as 
the predicted melt fraction (predicted value) for 
the chosen experimental data for temperature 
distribution (testing dataset). In Fig. 7, it can be 
seen that the Ψ term is lowest at the 66% melt 
fraction mark and respectively assigned as the 
predicted melt fraction. The actual melt fraction 
(as measured in the experiments) for that testing 
data set was 63%, thus demonstrating that the 
ML algorithm provided an accuracy of 95.2% for 
this particular instance. Additional examples are 
provided in the appendix for showing the plots of 
the temperature transients in the test data (used 
for making predictions for the instantaneous 
values of melt fraction). A selected temperature 
distribution at a particular instant in time and the 
generation of Ψ terms across all of the recorded 
times from the historical training dataset was 
used to establish the magnitude of correlation of 
the particular testing case to the melt fraction of 
the training data arrays. This method for 
predictions was performed for the entire array of 
testing temperature distribution data as well as 
for multiple testing data sets in order to develop 
statistics and quantitative metrics analyzing the 
accuracy and validity of the predictions shown in 
detail in the following sections. Furthermore, this 
method shows the feasibility of accurately 
predicting the melt fraction in real-time (with 
accuracies in excess of 95%) by utilizing the real-
time temperature transient data within a TES for 
any duty cycle and during the melting of any 
PCM. 

 

 
 

Fig. 1. Typical transient temperature profile (transient plot) for a PCM during the melting 
process [24] 
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Fig. 2. Transient plot of  (i.e., [T]
2
) 

 

 
 

Fig. 3. Image of experimental apparatus used in this study 
 

 
 

Fig. 4. A representative plot of temperature transients (in °C) recorded by the three 
thermocouples mounted at different vertical heights (corresponding to melt fractions of 30% 

[T0], 60% [T1] and 85% [T2]) within the volume of the PCM contained in a measuring cylinder in 
the experimental apparatus 
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Fig. 5. Transient plot of melt fraction of PCM obtained from monitoring the height of liquid 
meniscus in the measuring cylinder using a digital camera 

 

 
 

Fig. 6. Plot of experimental data (Testing Data) showing temperature transients recorded by 
three thermocouples located at heights corresponding to 30%, 60% and 85% melt fraction.  

Red arrow denotes chosen value of a specific test-data set that was utilized for melt fraction 
predictions, as shown in Fig. 7 

 

 
 
Fig. 7. Transient profile of Ψ and melt fraction (%) for the training dataset shown in Fig. 6. Melt 
fraction (%) is correlated with temperature distribution data (training data set). The plot shows 
that the values of the Ψ terms are calculated for the entire training dataset. Since the Ψ term 
represents the numerical magnitude for the difference in the temperature distributions of the 
training data set and a chosen testing data point, the minimum point in the global distribution 
for the Ψ profile (as shown in this plot) is identified and the respective melt fraction (%) from 
training data set correlating to this global minimum is assigned as the predicted melt fraction 

(%) 
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This method was cross tested for multiple duty 
cycles and demonstrated very promising results. 
After the propagating melt front reaches the 
location of the first thermocouple in the system 
(corresponding to 30% melt fraction), the 
prediction accuracies are above 85%. This 
accuracy increases as the melt front reaches the 
second and third thermocouples in the system. 
For example, the accuracy approaches 95% for 
the predictions from the machine learning (ML) 
model for values of melt fraction in the range of 
85-100%. The melt fraction predictions before 
the melt front reaches the first thermocouple is 
lower, as there is no significant variation in the 
temperature data recorded by the array of three 
thermocouples. The prediction accuracies were 

improved with the incorporation of the  

parameter (i.e., values of  [ΔT]
2
). Hence, it can 

be expected that the accuracy can be refined 
with the addition of more thermocouples in the 
array within the system (or by optimizing the 
location of the three thermocouples in the array). 
 

The predictions from the ML algorithm were 

compared for cases incorporating the  term 
(called Ψ) with that of the cases not incorporating 

the  term (called Ψ’), as shown in  Equations 2 
and 3: 
 

'

'


'


'

''

'


'


 

 

The figs. below show the predicted values of the 
melt fraction and are compared with the actual 
melt fractions from experimental data. Figs. 8 

and 9 show the predictions and accuracies of the 

predicted values without the utilization of the  
parameter (called Ψ’); while Figs. 10 and 11 are 

based on predictions incorporating the  
parameter (called Ψ). Fig. 12 shows that the 
difference in the percent accuracy of the 

prediction with and without the  parameter (i.e., 
Ψ versus Ψ’). Furthermore, the difference in 
accuracies between the two methods was 
estimated using equation 4 listed below. 
 

Accuracy (%) = 
                           

                        
   × 100 (4) 

 

An overall observable trend in the results is that 
the predicted accuracy is initially low; however, 
as the melt front reaches 30% (the location of the 
first thermocouple) there is a significant increase 
in the prediction accuracy (which is in excess of 
85%). These further increases to values in 
excess of 90%  as the melt front propagates and 
reaches locations of the additional 
thermocouples (even surpasses 95% as the 
system approaches complete  melting). The 
graphs also show the increase in the percentage 

accuracy of the predictions when using the  
parameter (called Ψ), as opposed to not using 

the  parameter (called Ψ’), especially for the 
initial stages of the melt cycle. It can be observed 
that there is a significant increase in accuracy as 
the melt front fraction progresses from the range 
of 0%-10% to the range of 30%-100%. However, 
for the melt fraction values in the range of 60%-
100% there is only marginal improvement in the 
accuracy of the prediction. 

 

 
 

Fig. 8. Comparison of predicted values of melt fraction as a function of time to that of the 
actual values of melt fraction (obtained from experimental measurements) in machine learning 

(ML) model without using the  parameter (called Ψ’) 
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Fig. 9. Comparison of overall prediction accuracy (for the ML model without  parameter, 
called Ψ’) for the different range of melt fractions 

 

 
 

Fig. 10. Comparison of predicted values of melt fraction as a function of time to that of the 
actual values of melt fraction (obtained from experimental measurements) in machine learning 

(ML) model incorporating the  parameter (called Ψ) 

 
 

Fig. 11. Comparison of overall prediction accuracy (for the ML model with  parameter, called 
Ψ) for the different range of melt fractions 
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Fig. 12. Plot showing improvement in accuracy of predictions on incorporation of the  
parameter in the ML algorithm (Ψ versus Ψ’). substantial improvement in accuracy (~9%) is 

achieved for melt fractions in the range of 0-30% by incorporation of the  parameter. However, 
no benefits are derived for higher melt fractions and yet higher computational costs are 

incurred by incorporation of the  parameter 

 
4. CONCLUSION 
 
This study demonstrates the feasibility of using 
Machine Learning (ML) model based on RBF 
techniques [26] - for achieving high prediction 
accuracy for predicting the melt fraction of a 
specified mass of PCM based solely on the 
instantaneous measurement of transient 
temperature profile within a representative TES 
platform. This ML technique is based on the 
supervised learning approaches using an 
analogue to Radial Basis Functions (RBF) where 
a nearest-neighbor approach is utilized (i.e., 
using similarity learning that is based on 
regression analysis). The accuracy of this 
method is greater than 85% for determining the 
melt fraction of a PCM for the values of melt 
fractions in the range of 30-100%. Additionally, 
this accuracy increases as the melt fraction 
approaches 100%, which is attributed to the melt 
front reaching and passing additional 
thermocouples as it progresses through the PCM 
containment apparatus. The results of this study 
prove that ML techniques may be employed to 
be able to predict the melt fraction of a PCM 
within a TES unit which can be used as a tool to 
facilitate the implementation of inorganic PCMs 
to utilize their high latent heat capacity while 
mitigating the significant reliability issues 
concerning inorganic PCMs such as subcooling. 
Furthermore, the benefits of this method rely on 
its simplicity as there is no need for additional 
equipment (or additives to be added to the PCM). 
Competing techniques that rely on additional 
equipment (or require additives in the form of 

nucleators or gelling agents) will complicate the 
deployment/ operation while also increasing 
costs and compromise the effectiveness of such 
schemes due to the introduction of impurities 
within the PCM from these additives. Additional 
studies are currently being performed to further 
improve the prediction accuracy and incorporate 
additional parameters for improving the 
sophistication of the algorithm and enhancing the 
accuracy of the predictions (such as by 
comparing with negative-feedback control 
algorithms and proportional-integral-derivative/ 
PID control algorithms) for minimizing the fraction 
of un-melted PCM (i.e., without completely 
melting the PCM). This will help with determining 
the efficacy of this invention for maximizing the 
thermal energy storage capacity of a TES (using 
PCM) and also ensuring operational reliability 
while eliminating the need for subcooling of 
PCM. Moreover, the methodologies used in this 
study can have applications outside of TES in 
situations where there is a need for accurate real 
time complex system predictions based on 
previous historical systematic trends. The 
deployment of the Ψ term in the numerical 
scheme that was developed in this study - 
highlights the incorporation of a quantitative 
metric to compare the numerical similarity of 
particular multivariable parameters in 
multidimensional data, i.e., using an analogue of 
the Radial Basis Functions (RBF). Furthermore, 
the utilization of the weighting parameters can 
also improve the adaptability and robustness of 
this method based on specific complex system 
characteristics (which is a topic of future studies, 
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currently in progress in our research group). 
Therefore, the developed technique proves the 
feasibility of utilizing RBF based approaches, and 
demonstrates that RBF based real-time control 
schemes can provide accurate predictions in 
complex systems which typically exhibit 
nonlinear and chaotic characteristics in 
technological, social and biological phenomena 
to name a few. 
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APPENDIX 
 

 
 

Fig. A1. Transient temperature distribution recorded in the melting experiments (testing 
dataset). Red arrow signifies selected temperature distribution for melt fraction prediction 

 

 
 
Fig. A2. Transient profile of Ψ term and melt fraction time corresponding to Fig. A1. Transient 
profile of melt fraction is from training dataset by correlating the temperature distribution from 

training dataset. Transient profile of Ψ term were generated for the specified time and 
corresponding temperature distribution (as a quantitative metric for identifying how similar the 
selected real-time temperature distribution is to historical training data sets). The melt fraction 
associated with the global minimum of the Ψ terms is assigned as the predicted melt fraction 
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