STUDYING STABILITY OF THE LIBERATION POINTS OFBINARY ASTEROIDES M.N.Ismail¹, A.Bakry¹, Kh.I.Khalil², A. Hafez¹

¹Astronomy and Metrology Department Faculty of Science, Al-Azhar University, Egypt.

²Solar and Space Research Department, NationalResearch Institute of Astronomy and Geophysics (NRIAG)

ABSTRACT

In this study, the locations of the equilibrium points of both triangular and collinear of restricted three-body problem and their stabilities are studied. This study was applied on ten binary asteroids. A code was constructed by MATHEMATICA language to obtain liberation points and their stabilities.

On the other hand, the contour of zero velocity curves was displayed for two stable and unstable binaries. Key words: binary asteroids, liberation points, stability.

1. INTRODUCTION

Euler(1773) has discovered the three co-linear Lagrangian points $(L_1, L_2 \text{ and } L_3)$, a few years later Lagrange discovered the remaining points (L_4 and L₅). Sharma(1980) Studied periodic orbits of the second kind in the restricted three body problem when the more massive primary is an oblate spheroid.Sharivastavaet al.,(1983) studied equation of motion of the restricted problem of three bodies with variable mass.Gabernet al., (1991)studied a restricted four body model for the dynamic near the lagrangian points of the system.Mathlouthi(1998) Studied sun-Jupiter the infinity of periodic solution of the restricted three body problem by using a variational formulation.Llibre(1999) studied periodic and qusiperiodic orbits of the spatial three body problem. Llibreet al.,(2003) studied periodic orbits of the planer collision restricted three body problem. Llibreet al., (2003) studied, symmetric periodic orbits of a collinear restricted three body problem. Munzoet al.,(2004) studied the families of symmetric periodic orbits in the three body problem and figure eight.Inga Jinanget al.,(2004) studied modified restricted three body problem.Reppert (2006) investigated how to refine patched conic approximation to the restricted four body problem.

In this study, the locations of the collinear and triangular points of ten binary asteroids have been computed and their stabilitieshave been determined.

2. Equation Of Motion Of TheRestricted Three-Body Problem

The restricted three-body problem refers to the dynamics of two bodies of masses $m1 \le m2$ (referred to as the primaries) that move along circles about their common center of mass, and of a third body, of infinitesimal mass, that is subject to the gravitational attraction of the primaries. The motion of the primaries is not affected by the motion of the infinitesimal mass. Fig.(2.1) illustrates the position of the third body m₃referring to the center of mass of m₁ and m₂, and the reference plane (x, y, z).

The equations of motion for third body in synodic barycentric coordinate are given by (Szebehely, 1967):

$$\ddot{\mathbf{x}} - 2\dot{\mathbf{y}} = \mathbf{x} - \frac{\mu_1}{r_1^3} (\mathbf{x} - \mathbf{x}_1) - \frac{\mu_2}{r_2^3} (\mathbf{x} - \mathbf{x}_2) ,$$

(2.1)

M.N.Ismail, et al.

$$\ddot{y} + 2\dot{x} = y - \left[\frac{\mu_1}{r_1^3} + \frac{\mu_2}{r_2^3}\right]y$$
, (2.2)

$$\ddot{z} = -\left[\frac{\mu_1}{r_1^3} + \frac{\mu_2}{r_2^3}\right] z$$
 (2.3)

where

$$\mu = \frac{m_2}{m_1 + m_2} : \text{mass ratio}$$

$$r_1^2 = (x - x_1)^2 + y^2 + z^2 \text{ distance from } m_1 \text{ to}$$

$$m_3,$$

 $r_2^2 = (x - x_2)^2 + y^2 + z^2$:distance from m₂ to m₃

 $\mu_1 = Gm_1 = 1 - \mu$: gravitational parameter for m_1 ,

 $\mu_2 = Gm_2 = \mu$:gravitational parameter for m_2

 $x_1 = -\mu_2 = -\mu$:distance from m_1 to mass center,

 $x_2 = \mu_1 = 1 - \mu$: distance from m_2 to mass center.

3. Liberation points

At the liberation points there are zero velocity regions. So that it is very important to specify the location of these points.

Figure (3.1) shows the liberation points(L_1 , L_2 , L_3 , L_4 and L_5) for the two primary bodies (m_1 and m_2).

Figure 3.1 : The five Lagrange Points associated with two primary bodies.

Some restrictions are considered to determine the locations of the liberation points, which are:

1- m_3 lies at any point of $(L_1, L_2, L_3, L_4, L_5)$.

2- m_3 is very smaller than m_1 , m_2 .

3- the third mass would have zero velocity and zero acceleration where would appear permanently at rest relative to m_1 and m_2 , and the equilibrium points are defined when

$$\dot{x} = \dot{y} = \dot{z} = 0,$$
 (3.1)

$$\ddot{x} = \ddot{y} = \ddot{z} = 0$$
. (3.2)

Substituting Eqs. $(3.1)_{and}(3.2)_{into}$ Eqs (2.1), (2.2) and (2.3) respectively, this yields

$$\mathbf{x} = \frac{\mu_1}{\mathbf{r}_1^3} (\mathbf{x} + \mu) + \frac{\mu_2}{\mathbf{r}_2^3} (\mathbf{x} - (1 - \mu)), \quad (3.3)$$

$$\mathbf{y} = \left[\frac{\mu_1}{r_1^3} + \frac{\mu_2}{r_2^3}\right] \mathbf{y} , \qquad (3.4)$$

$$\left[\frac{\mu_1}{r_1^3} + \frac{\mu_2}{r_2^3}\right] \quad z = 0 \;. \tag{3.5}$$

3.1.LocationofliberationpointsofL₄ and L₅

After some little algebraic calculations had been done to solve (3.3),(3.4)and(3.5) then it is found that

$$x = \frac{1}{2} - \mu, \qquad (3.1.1)$$

$$y = \pm \frac{\sqrt{3}}{2}$$
. (3.1.2)

So, the coordinates of L_4 and L_5 are being

$$L_4 \left(\frac{1}{2} - \mu, \frac{\sqrt{3}}{2}\right)$$
 and

$$L_5 \left(\frac{1}{2} - \mu, -\frac{\sqrt{3}}{2}\right).$$

3.2- Location of liberation points of L_1, L_2 and L_3

L1, L2 and L3

RecallEqs. (2.1), (2.2) and (2.3) with y = 0 as well as z = 0, then the three collinear points

 (L_1, L_2, L_3) could be found from Eq.(3.3)

Now we can calculate(L_1, L_2, L_3) from

1- For $L_1 L_1$ lies between masses m_1 and $m_2 m_1$ and m_2 and it can be calcul

$$x - \frac{(1-\mu)}{(x+\mu)^2} + \frac{\mu}{(x-(1-\mu))^2} = 0.$$
(3.2.1)

2- ForL₂ lies outside the masse m₂

and it can be calculated from nonlinear equation

$$x - \frac{(1-\mu)}{(x+\mu)^2} - \frac{\mu}{(x-(1-\mu))^2} = 0.$$
^(3.2.2)

3- For L_3 point lies on the negative

x-axis and it can be calculated from nonlin

$$x + \frac{(1-\mu)}{(x+\mu)^2} + \frac{\mu}{(x-(1-\mu))^2} = 0.$$
(3.2.3)

4. Jacobi Integral

Multiply Eq. (2.1) by x, Eq. (2.2) by y and Eq. (2.3) by z to obtain

$$\ddot{x}\dot{x} - 2\dot{x}\dot{y} - \dot{x}x = -\frac{\mu_1}{r_1^3}\dot{x}(x+\mu) - \frac{\mu_2}{r_2^3}\dot{x}(x-(1-\mu)),$$

$$\ddot{y} \dot{y} + 2\dot{x}\dot{y} - \dot{y}y = -\frac{\mu_1}{r_1^3} \dot{y}y - \frac{\mu_2}{r_2^3} \dot{y}y,$$
$$\ddot{z} \dot{z} = -\frac{\mu_1}{r_1^5} \dot{z}z - \frac{\mu_2}{r_2^5} z\dot{z}.$$

After some algebraic calculations, the integrationwas done to obtain the zero velocity curves (Moulton, 1970)

$$\frac{1}{2}v^2 - \frac{1}{2}(x^2 + y^2) - \frac{\mu_1}{r_1} - \frac{\mu_2}{r_2} = c$$
(4.1)

where

 $\frac{1}{2}v^2$: is kinetic energy per unit mass relative to the rotating frame,

 $-\frac{\mu_a}{r_a}$ and $-\frac{\mu_a}{r_a}$:are the gravitational potential energy of the two primary masses respectively,

c: is called Jacobi integral, or Jacobi constant, sometimes called the integral of relative energy.

Equations (4.1) illustrates the zero velocity curves when v = 0.

5.1 -Firstly at collinear points

To study the motion near any of the equilibrium point $L(x_0, y_0)$.L

$$x = x_0 + \xi(5.1)y$$
$$= y_0 + \eta$$

where ξ and η are the coordinate (5.2) and the Potential V is

$$V = \frac{1}{2}(x^2 + y^2) + \frac{1 - \mu}{r_1} + \frac{\mu}{r_2}$$
(5.3)

So, V may be expanded by Taylor series ϵ L_i, (i=1,...5) as

$$\begin{split} V = V(x_0,y_0) + V_x(x_0,y_0)\xi + V_y(x_0,y_0) \ \eta + \frac{1}{2!}V_{xx}(x_0,y_0)\xi^2 + V_{xy}(x_0,y_0)\xi\eta \\ & + \frac{1}{2!}V_{yy}(x_0,y_0)\eta^2 \end{split}$$

where

 V_{x} is first derivative of V with respect to x,

 V_y is first derivative of V with respect to y,

 V_{xx} is second derivative of V with respect to x,

 V_{yy} is second derivative of V with respect to y,

The equation of motion of three body could be written in suitable form as

$$\ddot{\mathbf{x}} - 2\dot{\mathbf{y}} = \mathbf{V}_{\mathbf{x}}, \tag{5.4}$$

$$y - 2x = V_y, \tag{5.5}$$

 $\ddot{z} = V_z$. (5.6)

Substitute from Eqs. (5.1) and (5.2) into Eqs. (5.4), (5.5) and (5.6) respectively then it is found that $\ddot{\xi} - 2\dot{y} = \xi V + V n$

$$\varsigma = 2\mathbf{y} - \varsigma \mathbf{v}_{\mathbf{x}\mathbf{x}} + \mathbf{v}_{\mathbf{x}\mathbf{y}} \eta, \qquad (5.7)$$

$$\eta + 2\xi = \xi V_{xy} + V_{yy}\eta, \qquad (5.8)$$

$$\ddot{\zeta} = \zeta V_{zz}$$
. (5.9)

Let

$$\xi = \alpha e^{\lambda t} , \qquad (5.10)$$

$$\eta = \beta e^{\lambda t} . \tag{5.11}$$

Substitute from Eqs. (5.10) and (5.11) into Eqs (5.7), (5.8) and (5.9) respectively then it is found that,

$$(\lambda^{2} - V_{xx}) \alpha = (2^{\lambda} + V_{xy}) \beta,$$
 (5.12)

M.N.Ismail, et al.

$$(2^{\lambda - V_{xy}})\alpha = (\lambda^2 - V_{yy})\beta.$$
(5.13)

The characteristic equation becomes (Moulton, 1970):

$$\lambda^{4} + (4 - V_{xx} - V_{yy})\lambda^{2} + V_{xx}V_{yy} - V_{xy}^{2} = 0$$

By solvingeq. (5.14) the roots of λ are obtained. If the roots obtained are pure (5.14) nary numbers, then ξ and η are periodic and this stable periodic solution in the vicinity of x_0 and y_0 can be studied as:

1- If any of the $\frac{1}{2}$ roots are real or complex number, then $\frac{5}{4}$ and $\frac{1}{1}$ increase with time so that the solution is unstable. This can be happened because the solution contains constants terms in the form of exponentials.

2- If the remaining exponentials are purely imaginaries. Then the solution is stable.

To obtain the expressions

$$V_{xx}$$
, V_{yy} , V_{xy} ,
 V_{xz} and V_{yz} in terms of r_1 , r_2 and μ let
 $r_i^2 = (x - x_i)^2 + y^2 + z^2$, $i = 1,2$;
 $A = \frac{1 - \mu}{r_1^3} + \frac{\mu}{r_2^3}$,
 $B = 3\left(\frac{1 - \mu}{r_1^5} + \frac{\mu}{r_2^5}\right)$,
 $C = 3\left[\frac{1 - \mu}{r_1^5}(x_0 - x_1) + \frac{\mu}{r_2^5}(x_0 - x_2)\right]$.
 $V_{xx} = 1 - A + 3(1 - \mu)\frac{(x_0 - x_1)^2}{r_1^5} + 3\mu\frac{(x_0 - x_2)^2}{r_2^5}$,

$$V_{yy} = 1 - A + By_0^2$$
, (5.15)
(5.16)

$$V_{zz} = -A + Bz_0^2$$
 , (5.17)

while

 $V_{xy} = C y_0 \ , \ V_{xz} = C z_0 \ , \ \ V_{yz} = B y_0 z_0.$

In the case of collinear points, $v_0 = z_0 = 0$, so that $r_i^2 = (x_0 - x_i)^2$, i.e., i = 1,2 (5.18) $V_{xy} = V_{xz} = V_{yz} = 0$.

Then, the equations of motion become

$$\xi - 2\dot{y} = \xi V_{xx} = \xi (1 + 2A),$$
 (5.19)

$$\ddot{\eta} + 2\xi = V_{yy}\eta = \eta(1 - A),$$
 (5.20)

$$\ddot{\zeta} = \zeta V_{zz} = -A\zeta.$$
 (5.21)

The Last equation is independent of the first twoEqs. and its solution is $\zeta = c_1 \sin t + c_2 \cos t$.

Therefore the motion parallel to the z-axis for small displacement is periodic with period2^{π} π .Applying the values of V_{xxv}V_{xy} and V_{yy} V_{vv} in equation (5.14) yields $\lambda^4 + (2 - A)\lambda^2 + (1 + A - 2A^2) = 0$ (5.22)

Now there are three values of A corresponding to the three Lagrangian points L_1 , L_2 , L_3 obtained from equations (3.2.1), (3.2.2) and (3.2.3) respectively. It can be shown that the values of L_1 , L_2 and L_3 the next condition is verified.

$$1 + A - 2A^2 < 0$$

While values of μ up to its limit 1/2.Then, the four roots of equation (5.22)consist of two real roots, numerically equal but opposite in sign, and two conjugate pure imaginary roots. Then the solution for the straight-line case is unstable and the orbit becomes spiral.

5.2-Secondly triangular points:

The coordinate of the triangular equilibrium points L_4 , L_5 are

$$x_0 = \frac{1}{2} - \mu$$
 , $y_0 = \pm \frac{\sqrt{3}}{2}$

AtL₄ from Eqs (5.15),(5.16),(5.17) and(5.22) it is found that

$$V_{xx} = \frac{3}{4}, V_{yy} = \frac{9}{4}, V_{zz} = -1$$

$$V_{xz} = \frac{3\sqrt{3}}{4} (1 - 2\mu) , \quad V_{xz} = V_{yz} V_{yz} = 0.$$
(5.23)

The equations of motion at ⁴ become

$$\ddot{\xi} - 2\dot{\eta} = \frac{3}{4}\xi + \frac{3\sqrt{3}}{4}(1 - 2\mu)\xi,$$
 (5.24)

$$\ddot{\eta} + 2\dot{\xi} = \frac{3\sqrt{3}}{4}(1 - 2\mu)\xi + \frac{9}{4}, \qquad (5.25)$$
$$\ddot{\zeta} = \zeta V_{zz} = -\zeta .$$

The Last equation is independent of the first two and its solution is

 $\zeta = c_1 \sin t + c_2 \cos t \, .$

so that the motion parallel to the z-axis for small displacement and the solution is periodic with period 2^{π} .

As the same way to determine the characteristic equation for collinear points it is found that the characteristic equation for L_4 becomes

$$\lambda^4 + \lambda^2 + \frac{27}{4}\mu(1 - 2\mu) = 0.$$
 (5.26)

If $\mu \leq_{\frac{1}{2}}$ and if $1 - 27\mu(1 - 2\mu) \geq 0$ the roots are pure imaginary.

The inequality may be written as $1 - 27\mu(1 - 2\mu) = \epsilon$,

where ε is a positive quantity whose limit is zero.

The solution of this equation is

$$\mu=\frac{1}{2}\pm\sqrt{\frac{23+4\varepsilon}{108}}.$$

Since μ represents the mass ratio, which is less than $\frac{1}{2}$ the negative sign must be tak

en at the limit, $\varepsilon = 0 \rightarrow \mu = 0.0385$.0

Therefore if $\mu < 0.0385$ the roots become pure imaginaries and the motion of the particle displaced from the equilibrium point is oscillatory in form,hence the particle will remain in the vicinity of equilibrium point and the motion become stable.

 $If^{\mu > 0.0385}$ the roots become complex and the orbits become spiral.

The spiral orbits asymptotically approach the triangular libration points or depart from them;therefore, the motionbecomes unstable.

6. RESULTS AND CONCLUSION

A code was constructed by MATHEMATICA language, and applied on the ten binary asteroids to obtain liberation points,mass ratio and drawing contour plot of zero velocity curves. Selected two binary asteroids One of them its triangular points stable and another unstable at L_4 and L_5 .By using these relations to determine mass ratio from half- diameter of each mass binary asteroids as

$$\mu = \frac{m_2}{m_1 + m_2}$$
$$= \frac{\frac{4}{3}\pi\rho R_2^3}{\frac{4}{3}\pi\rho (R_1^3 + R_2^3)}$$
$$= \frac{R_2^3}{R_1^3 + R_2^3}$$

Tables (6.1) and (6.2) show the results for the given data of two asteroid diameters(D1 and D2)and the distance between them(R_b), which are usedby the code to determine the liberation points(L_1 , L_2 , L_3 , L_4 and L_5) for the ten binary asteroids. Figures (6.1) and (6.2) display the contours of zero velocity curves for stable binary 1996FG3 at^{μ} = 0.02829 and for unstablebinary 1999 DJ4 at μ =0.1111 respectively.

M.N.Ismail, et al.

Table 6.1: collinear points and stability for binary system.http://echo.jpl.nasa.gov/ lance/binary.neas.html.

No	Binary	D_1	Da	R.	μ	L.	L_{2}	La	Stability
		-	-	D			- 4	- 3	For
		(km)	(km)	(km)		(km)	(km)	(km)	L_{1}, L_{2}, L_{3}
1	VH 1991	1.1	44.	3.2	0601.	2.212	3.959	-3.28	unstable
2	AW1 1994	1	49.	2.3	10526.	1.337	2.901	-2.40	unstable
3	FG3 1996	1.5	465.	2.6	02892.	2.009	3.118	-2.63	unstable
4	PG 1998	9.	27.	1.5	02629.	1.127	1.79	-1.51	unstable
5	DJ4 1999	35.	175.	8.	11111.	47.	9093.	836	unstable
6	KW4 1999	1.5	57.	2.54	05201.	1.804	3.124	-5.595	unstable
7	DP107 2000	8.	328.	2.6	06447.	1.77	2.955	-2.699	unstable
8	UG11 2000	26.	156.	4.	17763.	189.	508.	429	unstable
9	SL9 2001	8.	224.	1.4	02148.	1.117	1.657	-1.412	unstable
10	CE26 2002	3	21.	5.1	00034.	4.854	5.349	-5.1007	unstable

Table 6.2: triangular points and stabilities for binary system.

No	Binary	()	L_4	()	L_5	Stability L_4 , L_5 For	
1	VH 1991	1.407	2.771	1.407	-2.771	Unstable	
2	AW1 1994	0.908	1.991	0.908	-1.991	Unstable	
3	FG3 1996	1.285	2.251	1.285	-2.251	Stable	
4	PG 1998	0.711	1.299	0.711	-1.299	Stable	
5	DJ4 1999	0.311	0.692	0.311	-0.692	unstable	
6	KW4 1999	1.139	2.199	1.139	-2.199	unstable	
7	DP107 2000	1.132	2.251	1.132	-2.251	unstable	
8	UG11 2000	0.129	0.346	0.129	-0.346	unstable	
9	SL9 2001	0.670	1.212	0.670	-1.212	stable	
10	CE26 2002	2.584	4.42	2.584	-4.42	stable	

STUDYING STABILITY OF THE LIBERATION POINTS OFBINARY ASTEROIDES

Figure 6.1: Contour plotfor 1996 FG3 binary system with $\,\mu=0\,.\,02829$

Figure 6.2: Contour plotfor1999 DJ4 binary systemwith $\mu = 0.1111$

REFERENCES:

- Benner, L. http://echo.jpl.nasa.gov/ lance/binary.neas. html.
- Gabern, F. andJorba, A; 1991. "Restricted four and five body problem in the solar system" universitata de Barcelona gran via 585,08007 Barcelona, Spain.
- Inga Jinang and Lia-chin Yeh.;2004."The modified restricted three body problem". The environment of evolution of douple and multiple stars .IA,UNAM.
- Euler,Leonhard, 1773, De moturectilineotriumcorporum se mutuoattrahentium (http://www.math. dartmouth. edu/~euler/ docs/ originals/E327.pdf)
- Llibre, J.;1999."Periodic and qusi-periodic orbits of the spatial three body problem".MontseCobera.
- Llibre, J. and Montserrat, C.; 2003. "Periodic orbits of a collinear restricted three body problem" Celestial mechanics and dynamical astronomy 86 : 163- 183 , Netherlands.
- Mathlouthi, S.;(1998)."Periodic orbits of the restricted three body problem". American mathematical society, Volume 850, No 6.

- Moulton, F. R.; 1970."An Introduction to Celestial Mechanics". Dover, New York.
- Munzo, F.J, Galant. J. and Freire, J.;2004."The families of symmetric periodic orbits in the three body problem and figure eight" Monografias de la Real Acadmia de ciencias de zaragoz.25: 229-240.
- Reppert, T.R.; 2006. "the patched conic approximation to the restricted four –body problem". Monografias de la Real Acadmia de ciencias de zaragoz.30: 133-146.
- Sharma, R. K.; 1980."Periodic orbits of the second kind in the restricted three body problem when the more massive primary ". VirkarmSarabahaiSpace Center, Trivandrum, India.
- Sharivastava. A.K. andIshwar B..;1983. "Equation of motion of the restricted problem of three bodies with variable mass". Department of mathematics .india college engineering, Bihar, India
- Szebehely. V.G.; 1967. "Theory of orbits: The restricted problem of Three-Bodies". Academic Press Inc, New York.