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ABSTRACT 
 

For women, the most dominant type of cancer is breast cancer and perhaps one of the most 
recognizedreasons of death. This is a disorder of many distinct traits, many of which are known as 
positive hormone receptor, human epidermal receptor-2 (HER2+), and three negative breast 
cancers (TNBC). Drugs that directly target and kill tumors constitute a rapidly-growing form of 
molecular therapy for cancer patients. Analysis reveals that stable breast tissue cells exhibit 
receptors which aren't usually present. As a result, it is imperative to cognize the molecular roots of 
breast cancer and the myriad compromised pathology-related processes and pathways to ensure 
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progresses in early diagnosis and prevention. This study demonstrates essential cellular pathways 
relevant for breast cancer including improvements in cell proliferation, apoptosis, and hormone 
balances in breast tissues. On the basis of these notions, we consider how breast cancer is 
associated to the creation of potentially therapeutic interventions and predictive biomarkers. 
 

 

Keywords: Breast cancer; tumor; apoptosis; cell proliferation. 
 

1. INTRODUCTION 
 

Cancer of the breast is the most prevalent form 
of cancers in females across the world [1], and it 
is still the leading cause of death [2]. If we talk 
about prevalence of breast cancer then in Britain 
1 out of 12 females are diagnosed with breast 
cancer [1]. Breast cancer is very common type of 
cancer in women and 18% cancers are breast 
cancer of all types of cancer diagnosed in 
women [1]. In 2021 the incident of breast cancer 
is going to increase 85 per 100,000 cases [1]. 
Breast cancer is considered to be the most 
pronounced and heterogeneous disease 
affecting both chromosomal and non-
chromosomal causes [3]. The genes that target 
estrogen receptor (ER) and HER2 crosstalk 
between ER and other signaling networks as well 
as epigenetic pathways have been proposed to 
be implicated in hormone tolerance to endocrine 
therapy [4,5]. With the new advances in 
molecular biology and immunotherapy, very 
precise personalized treatments can be adapted 
to different categories of breast cancers [6,7]. 
Therapies targeted for breast cancer comprises 
of substances or drugs which impede with the 
biochemistry of cells unsettling the growth of 
cancerous cells [8]. Women's breast cells might 
overexpress receptors that triggers them to 
proliferate, metastasize, etc. [9]. It's a 
heterogeneous disorder, having multiple risk 
factors such as diet, size, and family background 
[10]. Breast cancer is categorized according to a 
specific place of tumor development and gene 
expression profiling [11]. While alterations in a 
few primary genes such as BRCA1 and BRCA2 
are related with high cancer risk, majority of 
cancer cases are caused by genetic traits with 
low penetrance [12]. To recognize the genetic 
origins of breast cancer is important because it 
aids in the detection and prevention of malignant 
growths [13]. In this study, we outline important 
cellular mechanisms which have been 
substantially linked to breast cancer, guiding to 
modifications in cell proliferation, apoptosis, and 
hormone balances of breast tissues cells [14,15]. 
We address some possible indications that can 
detect breast cancer. There were 13.8 lac new 
cancer cases in 2008 (23% of total) and 458,400 
(14% of total) cancer deaths that year [1]. Around 

60% of mortalities from breast cancer are 
prevalent in technologically advanced nations, 
predominantly Western and Northern Europe, 
North America, Australia and New Zealand [16]. 
According  to  the  American  Cancer  Society,  in 
2008 out of 182,500 (approx.) American women 
who are diagnosed with cancer 40,500 died 
[1,17]. This is why there are various kinds of 
breast cancer [18]. There are several pre-test 
considerations of patients into account [19,20]. It 
has been shown that positive prognosis exists if 
receptors are high. Centered on the genetic 
pattern, breast cancer was classified into three 
types [21]. In the first group were ER or PR 
positive tumors and in the second group were 
positive for HER2 with or without ER and PR 
positivity [22-24]. TNBC is diagnosed because 
you cannot find an expression of the genes 
ER/PR and HER-2 [25,11]. Receptor signaling 
pathways play a critical role in the growth and 
development of breast cancer, inhibition of these 
receptors is main therapeutic strategy of breast 
cancer treatment [26]. 
 

2. TYPES OF BREAST CANCER 
 

There are mainly 3 subtypes conditional on the 
absence or presence of molecular markers for 
estrogen or progesterone receptors and human 
epidermal growth factor 2 (ERBB2; previously 
HER2): hormone receptor positive/ERBB2 
negative (70% of patients), ERBB2 positive 
(15- 20%), and triple-negative (tumors lacking 
all 3 standard molecular markers; 15%) [1,27]. 
At the time of diagnosis more than 90% of 
breast cancer are non-metastatic [28] . For 
metastatic individuals, the clinical targets would 
be to cure the illness and avoid recurrence 
that’s why triple- negative breast cancer has 
much inferior prognosis in contrast to other two 
forms of breast cancer because of its 5-year 
survival rate of 55 percent [28] as shown in Fig. 
1. 
 

Epidemiology of Molecular Types of Breast 
Cancer  
 

HER2-positive 
 
It is known that 20% of the aggressive breast 
cancers in the united states are her2 + [29]. Her2 
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+ cancers have the worst prognosis because 
they respond poorly to hormone therapy and 
her2 + cancers have greater chance of 
recurrence [30]. The breast cancer has so many 
copies of her2 gene, gene which activates the 
her2 proteins, which can be located on the 
cancer cells [31]. While in a normal function her2 
receptors controls the growth, division and repair 
of healthy breast cell while in proliferated state 
the cell division is rapid and uncontrolled due to 
the excess absorption of substance known as 
“human epidermal growth factor 2” energizing 

cell growth [32]. HER2+ breast cancer has same 
symptoms as that of the other kinds of cancer 
including protuberance in the breast; breast 
shape change, pain, engorgement and unusual 
discharge [33]. Treatment options for HER2+ 
breast cancer may include combination of 
surgical procedure, exposure to radiation, 
chemotherapy and/or administration of targeted 
therapy such as the immune monoclonal 
antibody, trastuzumab depending on its stage 
[34,35]. 

 

 
 
Fig. 1. Ihc based breast cancer subtype classification. Two major subtypes are the luminal (er+ 

or pr+) and non-luminal tumors (er- and pr-). These are further sub-classified into luminal 1 
(her2-), luminal 2 (her2+), non-luminal her2+ and triple-negative phenotype (tnp) [1] 

 
Table 1. Types of Breast cancer [1-4] 

 

Type of breast 
cancer 

ER 
status 

PR 
status 

HER2 
status 

Target therapy Occurrence 
(%) 

Luminal A + + -  Hormone therapy 

 Chemotherapy 

68% 

Luminal b + - +  Chemotherapy 

 Hormone therapy 

 Her2 inhibitors 

10% 

HER2 positive - + +  Chemotherapy 

 Her2 inhibitors 

4% 

Triple negative or 
basal like 

- - -  Chemotherapy  10% 

Others  unknown unknown unknown multiple 8% 
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Luminal A 
 
Luminal A is the predominant subtype for each 
race and era. These tumors are normally +ive 
and slow-growing estrogen receptor (ER) and 
progesterone receptor (PR). Treatment normally 
requires hormonal therapy [36-38]. 
 
Luminal B 
 
Luminal B comprises of the tumors that are 
estrogen receptor +ive, progesterone and HER2 
+. The growth of these tumors is rapid in 
comparison with Luminal A type. This type of 
tumor may benefits from chemotherapy and 
hormonal therapy and treatment targeting the 
HER2 receptor [39]. 
 
Triple –Negative 
 
Cells of this form of cancer have no estrogen, 
progesterone or HER2 receptors, this form is 
commonly aggressive and normally starts in the 
lymph nodes of breast [40]. Strong breast cells 
include estrogen and progesterone hormone 
receptors. They also contain HER2 receptors 
that promote normal cell development. ER-, 
HER2- breast cancer cannot be controlled with 
hormone treatment or HER2 blocking drugs [41]. 
Fortunately, other medicines, such as 
chemotherapy, radiation therapy and non-HER2, 
can be used to combat triple negative breast 
cancer [42] as shown in Table 1. 
 
Therapeutic targets 
 
Systemic treatment for no metastatic breast 
cancer is focused on subtype: hormone-positive 
tumor patients undergo endocrine therapy, and a 
few receive even chemotherapy; ERBB2-positive 
tumor patients receive ERBB2-oriented antibody 
therapy paired with chemotherapy, and 
chemotherapy is provided to patients with triple- 
negative tumors [28] as shown in Table 2. 
 
Signaling Pathways (Molecular/ Intrinsic) 
involved in breast cancer development 
 
Important similarities exist between natural 
growth  and  molecular cancer progression [43]. 
Human normal development is closely regulated 
by complex signal pathway allowing cells to 
interact with one another and the factors around 
them [44]. Various of these similar signaling 
channels are not surprisingly deregulated or 
discovered by cancer cells and CSCS [45]. 
Essentially, cancer is triggered by genetic and 

epigenetic modifications, which enable cells to 
escape the pathways that govern the 
proliferation, survival and migration of cells [45]. 
All of these shifts map signals regulating cell 
proliferation and division, cell mortality, cell 
differentiation and  destiny  and  cell  motility  
[45]. Initiating proto-oncogenic mutations can 
cause these pathways to be hyperactivated, 
whereas inactivating tumor suppressors gene 
destroys essential negative signal regulators [45] 
the emphasis is on the prevalent signaling 
mechanisms controlling the natural growth of 
mammary glands and stem cell functions of 
breast cancer, namely the signals from the 
oestrogen receptor (er), her2 and canonical wnt. 
[46]. 
 
Cyclin dependent kinases (CDKs) 
 
Classical division of mammalian cell 
characterized them into 4 different phases 
namely G1, S, G2 and M [47,48]. The ordered 
progression of these phases are strictly 
regulated at ‘checkpoints’ by the interaction of 
several cyclins and CDKs. [49,50] (Fig. 1). 
Belonging to a well preserved family of 
serine/threonine protein kinases approximately 
12 distinct genetic loci are identified to code for 
the CDKs [51,52]. The family comprises of 
three cyclins CDKs (CDK2, CDK4, CDK6), a 
single mitotic CDK (CDK1, known as CDC2 
formerly), and several regulatory CDKs such as 
CDK7, a part of CDK activating complex, and 
transcriptional CDKs (CDK8, CDK9) [53,54]. 
Unlike CDKs acting as regulatory subunits of 
the CDK-cyclin holoenzyme, cyclins are 
extremely assorted family of protein further 
divided into four classes (A-, B-, D-, E-type 
cyclins) [55]. Regardless of the large number of 
CKDs and cyclins only few have been intensely 
involved in pathogenesis of breast cancer 
[56,57]. There are numerous evidence proving 
that dysregulated cyclins D1:CDK4/6 complex 
have pivotal role in both initiation and 
progression of several cancers including breast 
cancer [58]. Dysregulation of the cyclin 
D1:CDK4/6 axis is regarded as an early step in 
breast cancer pathogenesis [59,60] as shown 
in Fig. 2. 
 
Her2 signaling 
 
Human epidermal growth factor receptors 
(EGFRs or HERs) 1 to 4 are a class of tyrosine 
kinase receptors that are found in normal tissue 
also in wide variety of cancer types [61,62]. The 
receptor-2 human epidermal growth factor (or 
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her2/neu, c-erbb2) is an egfr collaborator [63,64]. 
Like other receptors, her 2 is a tyrosine kinase 
receptor consisting of a ligand-binding 
extracellular domain, a transmembrane domain, 
an intracellular domain [65,66]. The active 
ingredient makes her2 a mainconstituent for 
constructing dimers with other molecules and 
provides her2 with an ability to influence several 

cellular functions through different Pathways 
[67,68]. The phosphorylation of tyrosine residues 
within the her2 intracellular domain is induced by 
the binding ligand and subsequent dimerization, 
which leads to the activation of a number of 
downstream signaling pathways, including mapk 
and pi3k. [69,70]. These signals are heavily 
related to breast tumorigenesis [69,71] (Fig. 3). 

 
Table 2. Therapeutic targets of breast cancer [5] 

 

Target gene Mutation Drug type Example 

HER2/ERBB2 Amplification/Mutation HER 2 inhibitor Hyaluronidase, Trastuzumab,  
Lapatinib, 
Neratinib, 
fam-trastuzumab deruxtecan 

ER Amplification ER inhibitor Tamoxifen, 
Clomifene, 
Raloxifene, 
Fulvestrant, 
Anastrozole 

EGFR Amplification/mutation ER downregulator Faslodex 
PI3K-K Amplification/Mutation mTOR inhibitor Sirolimus, 

Everolimus, 
Temsirolimus 

AKT1/2/3 Amplification 
PTEN Mutation/deletion 
Mtor Amplification 
KRAS Amplification/Mutation BRAF, MEK inhibitor Dabrafenib and Trametinib, 

Vemurafenib and Cobimetinib, 
Encorafenib and Binimetinib 

BRAF Amplification/Mutation 
NF1 Mutation 
CDKNIB Alteration CDK4 inhibitor Abemaciclib   

Palbociclib, 
Ribociclib 

CCCND1 Amplification 

BRCA1/2 Mutation/deletion PARP inhibitor Olaparib, 
Rucaparib, 
Niraparib, 
Talazoparib 

 
Table 3. Organization of MAPK pathways. The MAPK core consists of three kinases (MAPKKK, 

MAPKK, and MAPK), which form a signal transduction cascade that receives input from G-
proteins and produces different biological outputs [6,7] 

 

 ERK JNK P38 

G protein RAS RAC/RHO/RAP 
MAPKKK BRAF MEKK1/2 

MLK1/2 
Tpl-2, TAO1/2 

MEKK3/4 
ASK1 
MCK3 
DLK 
TAK 
TAO1/2 

MAPKK MEK1/2 MKK4/7 MKK3/6 
MAPK ER1/2 JNK1,2,2 P38alpha/beta/gamma 
OUTPUT Proliferation, differentiation and 

survival 
Proliferation, cell death, differentiation, 
inflammation 

https://www.drugs.com/mtm/trastuzumab.html
https://www.drugs.com/mtm/lapatinib.html
https://www.drugs.com/mtm/neratinib.html
https://www.drugs.com/mtm/fam-trastuzumab-deruxtecan.html
https://en.wikipedia.org/wiki/Fulvestrant
https://en.wikipedia.org/wiki/Anastrozole
https://www.drugs.com/mtm/sirolimus.html
https://www.drugs.com/mtm/everolimus.html
https://www.drugs.com/mtm/temsirolimus.html
https://www.drugs.com/mtm/talazoparib.html
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Fig. 2. The cyclin D/cyclin-dependent kinase (CDK)4/6/retinoblastoma (Rb) Pathway. In the 
context of breast cancer, both steroid and peptide growth factors drive proliferation through 

cyclin D/CDK4/6 activation. This results in the hyper-phosporylation of pRb as G1 progresses. 
When retinoblastoma protein (pRb) is hyper-phosphorylated, the transcription factor E2F is 
released and the cell cycle progresses through S phase. Small molecule kinase inhibitors of 
CDK4/6 aim to block the hyper-phosphorylation of pRb inducing a G1 arrest and preventing 

proliferation. ER estrogen receptor [2] 
 

 
 

Fig. 3. The HER2 Signaling pathway. HER2 as well as the other members of the EGFR family 
are receptor tyrosine kinases which are located on the cell membrane and responds to a wide 

variety of ligands. Phosphorylation of the tyrosine kinase domain in the cytoplasm initiates 
downstream oncogenic signaling pathways such as PI3K/AKT pathway and Ras/MAPK 

pathway [2] 
 
MAPK pathway 
 
Three kinases are considered as important 
regulators in MAPK signaling cascade, with the 
strongest upstream (MAPKKK) which is reactive 
to different extra- and intracellular signals, and 
with simple phosphorylation activation of the 

middle kinase (MAPKK) [72,73]. MAPKKs are 
exclusively phosphorylated and activate MAPK, 
normally using several substrates that execute 
cell fate decisions that are adequate for the input 
signal, including development, proliferation, 
differentiation, motility, stress response, survival 
and apoptosis [74,75]. Today, 4 distinct MAPK 
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mammalian cascades were defined according to 
the components of their MAPK: extracellular 
signal-regulated kinase 1 and 2 (ERK1/2), c-Jun 
N-terminal kinase (JNK), p38 and ERK5 [76,77] 
(Table 3). 
 
There are three main pathways to MAP kinase in 
human tissues, but the ERK-1 and -2 pathways 
are the most significant in termsof metastatic 
breast cancer progression and pathogenesis 
[78,79]. The main regulators for ERK-1 and -2 
are peptide growth factors that function via 
tyrosine kinase containing receptors [80,81]. 
Estradiol, progesterone and testosterone can be 
non- canonicalto activate MAP kinase via 
membrane- associated receptors and to various 
other ligands working through heterotrimeric G 
protein receptors [82,83]. Latest findings indicate 
that breast cancers also involve an increased 
proportion of cells when MAP kinase is activated. 
MAP kinase pathways will execute cross-talk 
results on the basis of ER and cell cycle 
mediated transcription in estrogen receptors 
positive for the breast tumor [84]. Estradiol 
promotes cell proliferation by different signaling 
pathways involving the signal transduction 
activation of MAP kinase through activation of 
non-transcriptional factor which are important in 
pathogenesis of cancer cell along with elevation 
of growth factor, this leads to MAPK signaling 
cascade activation. Progesterone and androgen 
are main growth hormones which are responsible 
for stimulation of MAP kinase which in turn cause 
cancer progression and pathogenesis [73] Fig. 4. 
 
RAS signaling 
 
The RAS proteins belong to superfamily of low- 
sub-atomic weight GTP restricting proteins [85]. 
Cell development is controlled by RAS family & 
actin cytoskeleton is controlled by RHO family 
[86]. Transmembrane receptors play and 
important role in signal transduction of cancer 
cell progression, for this purpose RAS G- 
proteins are important mediators  [87]. There are 
4 highly homologous isoforms of RAS-G 
proteins; NRAS, HRAS and two alternative 
variants of KRAS termed as KRAS4A and 
KRAS4B. NRAS encodes for neuroblastoma 
RAS viral oncogene homolog, HRAS encodes for 
Harvey rat sarcoma viral oncogene homolog 
while KRAS encodes for kristen rat sarcoma viral 
oncogene [87]. On the basis of upstream 
receptors RAS proteins play and important role 
as binary switches which causes activation of 
GTP through binding of GDP on it [85,86,87]. 
Following the activation of receptor tyrosine 

kinases, for example, the epidermal growth 
factor receptor (EGFR), the auto 
phosphorylated receptor is bounded to the SH2 
DOMAIN of growth factor-receptor-bound 
protein 2 (GRB2) [88]. Modulation between ON 
and OFF state of coupled proteins conversion 
of GDP to GTP or GTP to GDP takes place 
through enzymes. Various extracellular and 
intracellular signals are responsible for proper 
functioning of RAS proteins, in which 
multiplicity of GTPase and GAPs are of great 
importance [89,90]. EGFR & ERBB2 are 
stimulated by their overexpression in various 
kinds of cancers; including breast, ovarian & 
stomach carcinomas. Extracellular space is 
required for truncated receptors in EGFR & this 
transformed receptor is detected to be 
overexpressed in glioblastomas & in many 
other tumors [85]. Among all receptors, G-
protein coupled receptors are main for 
activation of RAS protein [91]. By the autocrine 
creation of EGF- like factors EGFR-family 
tyrosine kinases are activated, for example, 
changing development factor-a (TGF-an) in 
tumors [92]. Numerous other receptors are 
responsible for improper functioning of RAS 
protein, they inactivate RAS through various 
signal transductions signaling pathway which 
leads to progression and pathogenesis of 
metastatic breast cancer [91]. (Fig. 5). 
 
Wnt signaling 
 
Wnt family plays an important role in apoptosis, 
cell death, signal transduction and cellular 
pathways, they can decide the fate of a cell by 
affecting its morphology [93]. 19 wnt genes which 
are available in spliced isoforms are termed as 
main encoding genes for biological cellular 
functions [94,95]. Studies have shown that stem 
cells can be auto-renewed by Wnt signaling in 
specific tissues [96]. The genes of Wnt were 
recognized as cancer genes that depicts pivotal 
role in mouse model in tumorigenesis of 
mammary glands, so they cause breast cancer in 
a broad range of different tissues of human [97]. 
This shows mutation or dysregulation in Wnt 
signaling leads to breast cancer [98]. In 
mammals 19 Wnt genes are present, they 
encode for cysteine-rich secretory glycoproteins, 
mammary gland of human & mice also 
expresses a maximum of seven types of Wnt 
gene mutation is breast cancer [99,100]. 7 
transmembrane domains are present on frizzled 
receptors, on this receptor wnt proteins bind 
which leads to initiation of signaling pathway 
[94,95,101]. 
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Fig. 4. The MAPK cascades. MAPKs are present in the cytoplasm which can be translocated 

into the nucleus, where they catalyse the phosphorylation of lots of cytosolic proteins 
along witj numerous nuclear transcription factors [3] 

 

 
 

Fig. 5. The Ras/MAPK signaling pathway. External stimuli including ligand-activation of 
receptor tyrosine kinases, among others, initiate the activation of Ras, a small GTPase, 

through membrane-associated signaling complexes. Ras facilitates the heterodimerization and 
activation of Raf intracellular kinases, which starts a kinase cascade through MEK and ERK, 
resulting in the activation of transcription factors that drive genomic signature programs of 

dysregulated cell cycle progression, proliferation, invasion, and survival. Negative regulation 
of the pathway is accomplished through the action of DUSP family phosphatases on ERK, the 
hydrolysis of Ras-associated GTP by NF1, and the negative feedback actions of ERK on both 

MEK and Raf signaling complexes, among others [4] 

https://www.discoverymedicine.com/tag/mek/
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Fig. 6. The Wnt signaling pathway. canonical Wnt signaling is activated as secreted Wnt 
ligands bind to the seven-pass transmembrane receptor Frizzled (Fzd) and the single-pass 

low-density lipoprotein receptor-related protein (LRP) (light blue). LRP is then 
phosphorylated, which leads to the recruitment and polymerization of Dishevelled (Dvl) 

proteins (red) at the plasma membrane. The Dvl polymer (active) is now able to inactivate the 
destruction complex; that consists of AXIN, adenomatous polyposis coli (APC), and GSK3β, 
which leads to the stabilization and cytoplasmic accumulation of β-catenin (orange) which 
then translocates to the nucleus. Once it reaches the nucleus it is imported, once inside β-

catenin forms a complex with T-cell factor (TCF) and lymphoid enhancer factor (LEF) (purple), 
acting as a transcriptional switch, that changes multiple cellular processes [5] 

 

 
 
Fig. 7. The JAK/STAT pathway. After the cytokine binds to the receptor, JAK adds a phosphate 

to (phosphorylates) the receptor. This attracts the STAT proteins, which are also 
phosphorylated and bind to each other, forming a pair (dimer). The dimer moves into the 

nucleus, binds to the DNA, and causes transcription of genes. Enzymes that add phosphate 
groups are called protein kinases [6] 
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In human beings approximately 10 frizzled 
receptors have been identified to take part in 
signaling cascade [102]. Wnt signaling pathways 
also present alternative to non-canonical, which 
lacks α-catenin. For this pathway cell surface 
receptors are consists of two proteins: the 
Frizzled family protein that is seven trans- 
membrane domain protein & LRP5 or LRP6 
those are LDL receptor-related proteins [103]. 
Due to their structural resemblance, a large 
number of Wnt proteins have the same pathway 
for signaling & are practically completed in trial 
tests [104,105]. This mutual pathway includes α- 
catenin a cytoplasmic protein as an intermediate 
in important signaling & is called as the α-catenin 
process [106]. Homo and hetero-oligomers are 
formed by frizzled receptors which are cell 
specific and signal specific in their expression. 
Other mechanism of action involved association 
of frizzled receptors with other co-receptors 
[107]. When Wnt protein is absent low level 
degradation is responsible for maintenance of 
beta-catenin signaling pool. Glycogen synthase 
kinase 3 beta (GSK3b) and serine/threonine 
kinase 1 (CK1) are responsible for 
phosphorylation of beta-catenin [108]. A complex 
consists of adenomatous polyposis coli (APC) 
protein, diversin and axin is main place for 
phosphorylation of beta-catenin [109]. GBP/Frat-
1 is recruited through to dishevelled proteins 
(Dsh) because degradation of Beta- catenin is 
prevented upon receipt of wnt signal [104,105]. 
This leads to displacement of GSK3b from 
destruction complex [107]. Wnt signaling is 
mediated by assistance of low density lipoprotein 
receptor related protein family (LRP5/6) 
[104,110]. Dsh comes in contact with frodo and 
beta- arrestin, while effect of Dsh is effected by 
Dapper because it is antagonist of Dsh [111] 
(Fig. 6). 
 

A, wnt1/3 binds the g-protein coupled receptor 
fzd and the tyrosine kinase receptors lrp5/6 to 
start initiation of signaling pathway [112]. The 
subsequent signaling complex elevates β-
catenin translocation to the core & along these 
lines drives development period of melanoma, 
whereby cells separate & multiply on the 
surface. B, an expansion in wnt5a enacts the 
non- canonical wnt signaling pathway through 
fzd and the tyrosine kinase ror2 [104,110]. 
Downstream effectors, for example, arf6, akt, 
jnk and pkc drive a change to the vertical 
development stage, whereby melanoma attack 
through the dermis and metastasize c. In 
breast cancer cells, on the other hand, wnt5a 
signaling activates camkii to promote -catenin 

corruption, preventing the translation of 
qualities that promote metastasis and attack 
[111]. 
 

Jak STAT pathway 
 

STATs are proteins in nature that were found in 
1988 [113]. IFNs type I’s transcription is 
initiated by them interferon (IFN)-stimulated 
response elements are bound to it that is a 
sequence of DNA [114]. In 1992 three labs 
separately found JAKs, so that they authored 
the JAKs pathway [115]. The JAK is a word 
which originates from deceptive god of 
Romans that concludes two spaces; it has 
kinase like space & a synergist field [113]. 
Type I-and II receptors are closely related to 
JAKs. The receptor dimerization is caused by a 
ligand known as cytokine & JAKs are initiated 
[116]. Trans-phosphorylation takes place when 
tyrosine residues attaches to JAKs and as a 
result activates it, STATs docking sites are 
created for recruitment of inactive cytoplasmic 
translation factors [117]. In the cell biology 
Phosphorylation is the most widely recognized 
alteration, they have a significant role in 
signaling pathways by its controlling action. In 
the cytoplasm unphosphorylated (OFF) STATs 
are present. When JAKs are activated they 
phosphorylates STATs (ON) and STATs 
dimers, by this docking sites are abandon on 
receptors. That’s why nucleus is translocated & 
they activate or suppress gene transcription by 
binding to specific DNA sequence [115]. Serine 
phosphorylation is independent [118]. 
Transcriptional potency is enhanced by 
phosphorylation of serine of STAT, though 
serine phosphorylation of STAT3 has been 
accounted in a negative way. P38, Erk and 
JNK are involved in serine phosphorylation of 
STATs [119]. The JAK-STAT pathway 
additionally encourages different cell reactions 
to assorted types of cell stretch [120]. 
 

JAK1, JAK2, JAK3 and TYK2 are four main 
members of JAKs family (Stark et al., 1998). 
Every JAK part comprises of a few distinctive 
fields which are following: N-terminal FERM 
domain which is named after the discovery of a 
protein containing this domain (band 4.1, Ezrin, 
Radixin and Moesin) [121]. 3 sub-domains F1, 
F2 and F3 are present in FERM domain, which 
are basically like CoA binding, pleckstrin 
homology-phosphotyrosine restricting spaces 
and Ubiquitin [122]. Protein-protein 
communications are its responsibility, like on its 
membrane scaffold &adoptor interaction [123]. 
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The SH2 (Src homology 2) contain around 100 
residues in its domain for binding of tyrosine. 
 

Dimerization and activation of STATs is done by 
SH2 domain [124]. On account of homology to 
Protein Central pseudo kinase domain is named; 
catalytic function is absent in them, but they 
perform regulatory function [125]. On C-terminus 
PTK domain is located. It comprises roughly 
250– 300 residues and an ATP-restricting site 
comparing a synergist domain. On special 
downstream substrates it is responsible for 
phosphorylation of tyrosine residues [126]. 
Seven STATs members are included in humans’ 
STAT family: STAT1, STAT2, STAT3, STAT4, 
STAT5A, STAT5B and  STAT6  [127]. They have 
exciting homology in these regions: Unique N- 
terminus  region  is  involved  in  STAT activation 
e.g. dephosphorylation of the STAT interactions 
or STAT, like formation of tetramer [128]. In 
protein-protein interactions and nuclear export 
coiled-coiled domain plays an important role. AS- 
type immunoglobulin fold is present on DNA 
binding domain and is also found in p53. 
Sequence-specific binding is assisted by this 
[129]. TTCN3–4GAAA sequence is recognized in 
target genes on the promoter region [130].Trans- 
Activation Domain is abbreviation of C-terminus 
and very conserved residues of tyrosine are 
present here [131]. In recruitment of special 
proteins many discovered varieties are included, 
like histone deacetylases, DNA polymerase II, 
etc. [129]. JAKs are activated in response to 
cytokine binding, and the intracellular region of 
the receptor is phosphorylated to serve as a 
docking site for STATs to be recruited & 
phosphorylated [132]. Through SH2 domain 
homo and hetero dimerization starts to takes 
place. StIP protein (STAT Interacting Protein) is 
related to JAK- STAT pathway. It assists 
phosphorylation of unphosphorylated STATs. In 
the nucleus in impor tin α-5 dependent manner 
phosphorylated STATs are translocated through 
Ran nuclear import pathway. Dimerized STATs 
bind to complex DNA sequences at the end of 
their transition to control transcription of their own 
target genes. [133]. Anyhow great knowledge is 
provided about the process of STAT 
phosphorylation, dephosphorylation of STAT in 
the nucleus is not completely defined [134-138] 
(Fig. 7). 
 

3. CONCLUSION 
 

Not only are these pathways involved in 
hormone signaling to cancer cells, but these 
pathways also control cellular roles that 
impacts the onset and progression of cancer of 

breast. Signaling pathways are critical for 
mammary growth, and variations within pi3k 
pathway are more prevalent in many diseases, 
such as parkinson's, diabetes type ii, and 
various forms of cancer. As the multiple 
dysregulations in key nodes of the multiple 
pathway are identified as having links with 
different diseases, identifying particular 
alterations and knowing their functional 
significance will permit for more precise 
selection of medication, having least side 
effects. It is seen that the MAPK pathway have 
pivotal part in progression of breast cancer 
through inducing cell propagation or leading to 
further pathways.The movement of cell for the 
interaction within the extracellular world is 
carried out by JAK-STAT signalling 
mechanism/pathway. Dysregulation of Wnt 
signalling can contribute to development of 
cancer as it governs cellular differentiation and 
proliferation. Several facets of regulation of 
these pathways are still under study, 
particularly regarding the cross talking of these 
pathways, their effect on former pathways, 
feedback, tumor microenvironment interactions, 
cellular metabolism, risk factors, and reaction 
to drug therapy. Conversely, both of these 
mechanisms are seen to be in a coordination 
acting as a network, and a number of potential 
interventions need to be considered. In this 
sense, an increasingly thorough analysis of 
these pathways facilitates the generation of 
important and transformative knowledge on the 
molecular basis for gene expression regulation 
in normal as well as cancerous cells, as well as 
the nature of cellular contact. Understanding 
breast cancer progression and incorporating 
molecular-based methods for quality 
improvement in diagnostics, prognostics, and 
care of breast cancer patients necessitates 
identifying the spectrum of mutations that exist 
throughout the major signaling pathways, as 
well as how they interact throughout pathways. 
In this era of pandemic it has become 
mandatory to understand all factors which take 
parts in pathogenesis of breast cancer because 
cancer patients are more vulnerable to covid-
19. So in future our strategy will be 
simultaneous treatment of breast cancer and 
covid-19. For this purpose, we will use two in 1 
drugs which will show anti-viral and anti-cancer 
drugs so that we can improve mortality rate by 
clinical management strategies. This can be 
done by better understanding of all signaling 
pathways which are responsible for 
progression and pathogenesis of breast 
cancer. 
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